欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与意义
在民族文化传承和数字化保护中,舞蹈作为一种重要的艺术形式,其记录和分析对于理解和传播民族文化具有重要意义。然而,传统的舞蹈记录方式往往依赖于人工观察和记录,效率低下且易受主观因素影响。因此,开发一种基于计算机视觉的民族舞蹈识别系统,可以实现对舞蹈动作的自动捕捉、分析和识别,对于提高舞蹈记录的效率、准确性和客观性具有重要意义。
本项目旨在利用Python、OpenCV和MediaPipe库,构建一个民族舞蹈识别系统。该系统能够实时捕捉舞蹈视频中的舞者动作,通过计算机视觉算法对舞者姿态进行识别和分析,进而实现对舞蹈动作的自动分类和记录。
二、技术原理
OpenCV:OpenCV是一个开源的计算机视觉库,提供了丰富的图像处理和计算机视觉算法。在本项目中,OpenCV主要用于读取和处理舞蹈视频,提取关键帧和图像特征。
MediaPipe:MediaPipe是Google的一个开源项目,专注于跨平台的机器学习管道构建。它提供了一系列预训练的机器学习模型,用于处理图像、视频和音频数据。在本项目中,MediaPipe的Pose模型被用于识别舞者姿态,获取舞者身体的关键点坐标。
具体技术原理如下:
读取舞蹈视频:使用OpenCV的VideoCapture类读取舞蹈视频。
姿态识别:利用MediaPipe的Pose模型对视频中的每一帧进行姿态识别,获取舞者身体的关键点坐标。
姿态分析: