【问题解决】| ControlNet训练为什么这么慢???关于模型量与显卡资源认知关系的建立

我觉得做深度学习相关的开发,要深刻认识到自己的显卡资源有多少,以及对应能做一些什么研究

比如今天的我就对这部分认识不深,终归还是实践代码少~缺乏经验

我觉得之后要多跑代码,多跑工程项目啊。

我今天做了一件什么事情

我企图在一张3080上训练5.3GB的ControlNet

我一开始没啥概念,反正就各种折腾好环境开始训练了,忽然发现,哦?为什么这么慢,慢的离大谱

1个epoch需要12500次迭代,而一次迭代4分钟,大约需要八百多个小时

我不禁好奇

ControlNet训练为什么这么慢?

本质上他其实是属于大模型范畴了

我后来看了一下,Controlnet大约十亿参数

要知道某些开源大语言模型基本也就是几十亿起步

好家伙,原来如此

所以,一般来说 几个GB的模型 就已经有亿个往上的参数了,训练自然会慢~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值