题目链接:http://acm.csu.edu.cn:20080/csuoj/contest/problem?cid=2178&pid=A
大意是,井底有一些青蛙,他们都有自己的高度,重量和跳跃高度,现在可以用别的青蛙搭梯子,任何一个青蛙身上的叠加重量不能超过他自身,问最佳情况下能逃离多少青蛙
简单推论后发现,假设当前最上面的青蛙的重量为wi,再往上累加青蛙wj的重量应满足2*wj<=wi;
所以可以使用动态规划,dp[i[表示当前能撑起i重量,也就是最底层青蛙重量为i时,能到达的最大高度
转移就是要么将新的重量叠加上来,要么直接就可以跳出去。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const int maxn = 1e6 + 10;
const int maxm = 1e8 + 10;
typedef long long ll;
struct frog
{
ll i, w, h;
}Frog[maxn];
bool cmp(const frog &a, const frog &b)
{
return a.w > b.w;
}
ll dp[maxm];//体重为i的青蛙最高能到达的高度
ll min(ll a, ll b)
{
return a < b ? a : b;
}
ll max(ll a, ll b)
{
return a > b ? a : b;
}
int main()
{
int n, t;
ios::sync_with_stdio(false);
while (cin >> n >> t)
{
for (int i = 1; i <= n; i++)
{
cin >> Frog[i].i >> Frog[i].w >> Frog[i].h;
vis[Frog[i].w] = 1;
}
sort(Frog + 1, Frog + n + 1, cmp);
ll ans = 0;
for (int i = 1; i <= n; i++)
{
if (dp[Frog[i].w] + Frog[i].i > t)ans++;
for (int j = Frog[i].w + 1; j < min(Frog[i].w * 2, maxm); j++)
{
int w = Frog[i].w;
dp[j - w] = max(dp[j - w], dp[j] + Frog[i].h);
}
}
printf("%lld\n", ans);
}
return 0;
}