YOLOv3 darknet版识别图片,视频并打印终端结果

本文介绍了如何不修改darknet源码,而是通过官方提供的Python接口来调用YOLOv3进行图片和视频的目标识别。主要步骤包括编译yolo_cpp_dll项目获取dll文件,然后在Python代码中使用darknet_video.py或darknet.py进行识别,并展示如何将识别结果输出到终端。通过示例代码展示了识别视频帧的主函数YOLO(),以及如何捕获和显示识别结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近做的项目需要用Yolov3的视频帧识别目标并将结果输出,在网上看了很多修改detector.c源文件重定向输出文件和批量c,但试了很多都没有成功,可能是版本的问题,所以这里建议如果只是输出信息和批量测试,并不需要修改源码,而只需要调用darknet本身的python接口就可以了,如下:

这是官方给的python接口,无需修改重编译darknet原项目,只需在python代码中修改或重定向输出即可

我用的是darknet_video.py识别视频流,而在使用darknet_video.py之前,需要编译一下

图中的yolo_cpp_dll.sln项目,编译方式和darknet.sln一样,先修改yolo_cpp_dll.vcxproj配置文件,然后添加opencv等目录,步骤都是和编译darknet.sln一样的。编译完后会得到一个yolo_cpp_dll.dll文件,有了这个文件,才可以运行darknet_video.py文件。

(如果是识别图片,直接看darknet.py的代码就可以了,无需编译其他东西)

接下来看代码,下面的函数YOLO()是调用darknet进行视频识别的主函数,如下:

def YOLO():

    global metaMain, netMain, altNames
    configPath = "./cfg/yolov3.cfg"
    weightPath = "./yolov3.weights"
    me
### 使用YOLO算法实现无人机平台的目标检测与识别 #### 准备工作环境 为了使YOLO能够在Bebop2无人机上运行,需先配置好开发环境。这涉及到安装ROS(Robot Operating System),并设置特定的工作空间来管理软件包。 ```bash source ~/bebop_ws/devel/setup.bash ``` 此命令用于激活之前建立好的catkin工作区,确保可以访问到所有必要的工具和库文件[^2]。 #### 启动YOLO检测节点 一旦准备工作完成,在新的终端窗口执行如下命令以启动YOLOv3模型来进行图像处理: ```bash roslaunch darknet_ros yolov3.launch ``` 这条指令会加载预训练过的YOLO权重,并初始化订阅来自摄像头的数据流,从而实现实时目标检测功能。 #### 数据传输与处理 通过上述操作后,YOLO将会自动接收由Bebop2相机拍摄的画面帧作为输入源。该过程依赖于ROS的消息传递机制,使得不同组件之间能够高效协作。当接收到新一帧画面时,YOLO网络会对其中的对象进行分类预测,最终输出带有边界框标注的结果图给用户界面显示或进一步分析使用。 #### 性能优化建议 考虑到计算资源有限的情况下,对于嵌入式设备如小型无人机而言尤为重要的是考虑性能调优措施。一方面可以选择更轻量级本的YOLO变体比如Tiny YOLO;另一方面也可以调整推理频率以及分辨率参数等手段达到平衡精度同效率之间的关系[^1]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值