本人小白,这只是学习的笔记,如有差错望多多指正。
参考博客:1.介绍一个相对小众的深度学习框架Darknet,其YOLO神经网络算法对目标检测效果显著
2.YOLO v3网络结构分析(尤其是这一篇,更加深入和详细一些,网络模型图片也是转发于此)
一. 什么是Yolov3?
Yolov3是基于一款小众的深度学习框架——darknet的目标检测开源项目,darknet短小精悍,虽然功能和复用性不如当前大火的深度学习框架Tensorflow和Caffe2,但由于其源码都是用纯C语言和CUDA底层编写的,所以它的特点让它在Yolov3项目中大放光彩:速度快,充分发挥多核处理器和GPU并行运算的功能。所以,Yolov3的快速检测正好适合我们这种需要实时检测视频帧的项目;此外,它的准确度也非常高,在尺寸中等偏小的物体上有非常高的准确率,这得益于它的训练方式(会在下面介绍),但在大尺寸的物体,比如占到了整个图片百分之60的物体,识别率则不尽如人意。