Yolov3原理原理分析

本文是关于Yolov3目标检测算法的学习笔记,介绍了Yolov3基于Darknet框架的优势,如速度快、适用于实时检测。Yolov3通过全局区域训练提取图像特征,采用端对端检测,利用深度卷积神经网络模型Darknet-53进行预测。网络结构包括53个全连接卷积层,通过1*1和3*3卷积核提取特征,结合置信度进行目标识别。
摘要由CSDN通过智能技术生成

本人小白,这只是学习的笔记,如有差错望多多指正。

参考博客:1.介绍一个相对小众的深度学习框架Darknet,其YOLO神经网络算法对目标检测效果显著

                  2.YOLO v3网络结构分析(尤其是这一篇,更加深入和详细一些,网络模型图片也是转发于此)

一. 什么是Yolov3?

         Yolov3是基于一款小众的深度学习框架——darknet的目标检测开源项目,darknet短小精悍,虽然功能和复用性不如当前大火的深度学习框架Tensorflow和Caffe2,但由于其源码都是用纯C语言和CUDA底层编写的,所以它的特点让它在Yolov3项目中大放光彩:速度快,充分发挥多核处理器和GPU并行运算的功能。所以,Yolov3的快速检测正好适合我们这种需要实时检测视频帧的项目;此外,它的准确度也非常高,在尺寸中等偏小的物体上有非常高的准确率,这得益于它的训练方式(会在下面介绍),但在大尺寸的物体,比如占到了整个图片百分之60的物体,识别率则不尽如人意。

二. Yolov

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值