codeforces101B——Buses(线段树或树状数组+离散化)

博客介绍了如何解决Codeforces上的101B问题,该问题涉及计算从点1到点n通过多个公交车路线的方案数量。博主提出使用线段树或树状数组结合离散化的方法来求解,通过维护区间和并进行插值更新。在离散化过程中,确保包括点0,并注意如果终点的起点包含0,方案数需额外加1。

题目链接:https://codeforces.com/problemset/problem/101/B

题目大意:

给你很多个公交车的起点和终点,你可以从一个公交车路线上的任何一个点上车,但上车后只能从公交车路线的终点下车,问你从点1到点n有多少种方案。

思路

对于一个公交车站的终点ti,所有可能的起点为si到ti-1,设dp[i]为到达某个点的方案数,则最终点ti的方案数肯定就是这些可以到达他的点的方案数之和。所以用线段树维护区间和,插值更新就好了(树状数组就更加方便了。

还需要离散化,记得在离散化时候将点0插入vector中,保证从0的位置开始,如果一个终点的可能起点包含0,则方案数还要+1;

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
using namespace std;
const int mod = 1e9 + 7;
const int N = 2e5 + 10;
int n,m,Rn,Rank[N];
int sum[N];
struct node{
    int s,t;
}a[N];
bool cmp(node a,node b){
    return a.t<b.t;
}
void setRank(){
    int I = 1;
    sort(Rank+1,Rank+1+Rn);
    for(int i=2;i<=Rn;i++) if(Rank[i]!=Rank[i-1]) Rank[++I] = Rank[i];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值