入汛以来,长江流域持续的强降雨使得沿岸多地成为洪水风险极高地区,抗洪、抢险、救灾继新冠病毒之后成为又一个攻坚阵地。如何科学地评估洪水风险,是快速决策的关键。
实际生活中,根据风险是否可控,一般将洪水风险大致分为两类:一类是通过数据分析可以得出其发生的可能性和后果,如强降雨引发的区域性洪水、水库/大坝溃决洪水等。这类洪水可以通过有关资料分析和设定一定条件计算得到可能的损失后果,也就是说,风险可以预判。另一类洪水风险基本是未知的,如滑坡堵塞河道形成堰塞湖引发的洪水,无法预知事件发生的地点和规模,具体的洪水风险无法预判。
针对第一类洪水风险,即可预知洪水风险,可以利用QGIS提供的FloodRisk2插件,对洪水造成的人员和财产损失进行预判。
评估模型
一般来说,洪水风险由引发风险的事件、受影响事/物、敏感性等因素共同决定。
引发风险的事件:对于洪水风险来说,常见的引发事件是强降雨。
受影响事/物:即暴露程度(Exposure),通常指的是洪水发生区域的人或者社会经济财物。
敏感性:即易损性(Vulnerability),洪水发生区域中人群或者财物受损坏的容易程度。
洪灾风险的产生,取决于受影响地区的暴露程度(人、财)和易损性,因此,洪水风险可以用“洪灾发生的概率*损失”来描述。即:
风险(Risk)=灾害发生概率(Probability)*产生结果(Consequence)
数据获取
要量化和预估洪水灾害,需要提供洪泛区的洪水特征地图、区域的人口和财产分布、脆弱性等数据,下载地址:
https://github.com/FloodRiskGroup/FloodRisk-doc/tree/master/FloodRiskData_2
数据说明:
一般情况下,在洪水风险评估时,按照不同的风险特征如重现时间、水深、流速等分为不同的模拟场景,涉及的数据包括:最大水深(maximum depth values)、最大水流速度(maximum velocity values)和报警时间(wa