选择排序:
选择排序算法的实现思路有点类似插⼊排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最⼩的元素,将其放到已排序区间的末尾。
代码实现:
package data.Sort;
public class SelectionSort {
public static void main(String[] args) {
int[] arr = new int[]{1,4,4,5,6,7,11,9};
selectionSort(arr);
ArrPrint(arr);
}
public static void selectionSort(int[] data){
int n=data.length;
if(n<=1){
return;
}else{
// 从未排序空间中选出最小值
for(int i=0;i<n-1;i++){
int minINdex=i;
for(int j=i+1;j<n;j++){
if(data[j]<data[minINdex]){
minINdex=j;
}
}
// 此时minIndex对应元素是未排序空间中最小的
int temp=data[i];
data[i]=data[minINdex];
data[minINdex]=temp;
}
}
}
public static void ArrPrint(int[] data){
for(int i=0;i<data.length;i++){
System.out.print(data[i]+" ");
}
}
}
选择排序算法分析:
空间复杂度、时间复杂度
选择排序空间复杂度: O(1),是⼀种原地排序算法。
选择排序时间复杂度:选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都O(n^2)。
稳定性:选择排序是⼀种不稳定的排序算法。选择排序每次都要找剩余未排序元素中的最⼩值,并和前⾯的元素交换位置,这样破坏了稳定性。
⽐如 5,8,5,2,9 这样⼀组数据,使⽤选择排序算法来排序的话,第⼀次找到最⼩元素 2,与第⼀个5 交换位置,那第⼀个 5 和中间的 5 顺序就变了,所以就不稳定了。正是因此,相对于冒泡排序和插⼊排序,选择排序就稍微逊⾊了。
选择排序优化
选择排序是循环一次找一个值,其实我们完全可以每次找2个值,一个最大和一个最小,这样就快了很多,也莫有什么性能损失。
插⼊排序&选择排序
在随机元素集合上,插⼊排序的性能与选择排序的性能差不多,但是插⼊排序在近乎有序的数据集上的性能要远⾼于选择排序,因此插⼊排序会被⽤于更加复杂排序的⼦过程。