巧解小学数学四舍五入后的最大和最小的小数

      最近辅导小孩数学题,发现有一类题目孩子不懂该如何求,家长也不知道该如何通俗易懂的给孩子讲解。例如,一个两位小数四舍五入为一位数之后结果为8.0,那么这样的两位小数最大是多少,最小又是多少?

     下面介绍一个我自己想到的一个简单的思路和方法: 我们可以这么理解四舍五入的意思:

(1)一个数最多可以加上4,加的超过4就会变质(晋级,改变原数),因此这个数加上相应位数的4就是可能的最大数,例如上题,8.0是一位数,还原为两位小数就是8.00,8.00加上带两位小数的4也就是加0.04,因此得数8.04就是最大的两位小数。

(2)一个数最多可以减5,这样刚刚好可以进位为原数,减的比5多就不能进位为原数了。因此这个数减去相应位数的5就是可能的最小数,例如上题,8.0是一位小数,还原为两位小数就是8.00,8.00减去带两位小数的5也就是减去0.05,因此得数7.95就是最小的两位小数。

     总结:遇到此类题目时,只需要将四舍五入后的约数加上相应位数的4就得到最大数,减去相应位数的5就得到最小数。此法我称之为“加4减5”法(嘿嘿,是不是南心老师独创?)。例如,一个三位小数四舍五入为两位小数的得数是7.50,那么这样的三位小数最小的数是多少,最大的又是多少? 

    解:最大的三位小数是   7.500+0.004=7.504,最小的三位小数是  7.500-0.005=7.495。

   注意:这里有两个关键点,要讲约数还原为相应的位数,例如两位小数7.50还原为7.500,其次,4和5也要还原为相应的位数,如这里的0.004和0.005。

      那如果约数的位数和原数差多个,而不只一个呢?例如一个四位小数四舍五入后的结果是7.50,那么这个原来的四位小数最大是多少,最小又是多少呢?

    解法:继续使用前面讲的“加4减5法”,即在约数后面的下一位加4,下二位加9,得到最大数,即7.5000+0.0049=7.5049为最大数;然后直接在约数后面的下一位减5,即7.500-0.005=7.495,也就是7.4950就是最小的四位数。

   再次总结:约数后面的下一位直接加4,其余补9,得到最大数;约数后面的下一位减5,其余补0.  

    如果原数是整数呢? 例如,一个三位数将个位数(最后一位)四舍五入之后得到750,那么这个三位数最大是多少,最小是多少?

   解:将被约的个位数加4,得到754就是最大的三位数;将被约的个位数减5,得到745就是最小的三位数。

   再如:一个三位数将后两位四舍五入之后得到700,那么这个三位数最大是多少,最小是多少?

   解:在被约的数的第一位加4,其余补9就得到最大的数,例如这里的700+49=749;在被约的数的第一位减去5,其余补0就得到最小的数,即700-50=650。

   最终总结:在被约的位数上,第一位加4,其余位置补9,就得到最大的数;在被约的位数上第一位减5,其余位置补0,就得到最小的数。此即“加4减5法”。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值