经常有客户问,我做的结构方程模型有些路径系数没有达到p<0.05的显著性水平,该怎么办?在此,博主谈谈如何处理这一问题。
第一,模型修正。通常情况下,结构方程模型是多路径回归模型,增加其他路径就会减少某个路径的相关性或“影响力”(个别情况是提高相关性),因此,试着删除某些理论上可以删除的或不重要的因素或路径,突出本研究的重要自变量和主要假设路径,让研究路径相对影响力提高(即系数变大,显著性提高)。
第二,如果是潜变量模型,则可以查看误差项修正,主要是其他潜变量的误差项修正。例如研究路径是A—C,但同时B也影响C,那么在B潜变量的误差项之间建立共变修正,有时候可以提高A—C的路径系数,因为误差项的共变关系实际上是增加了一个额外的解释变量,降低了B—C的系数,变相的增加了A—C的路径系数。当然,模型修正要有理论上的可解释性,不能一味的数据驱动。
第三,如果模型比较复杂,模型中存在很多不显著的路径或者还有一些其他路径没有设置(通常最容易忽视的是直接路径),那么将不显著的路径逐一删除或增加其他可能的路径,使最后模型中的路径绝大多数都是显著的以及最简约的,然后再考虑模型的其他修改。