本章重点
- 数据类型详细介绍
- 整形在内存中的存储:
- 原码、反码、补码大小端字节序介绍及判断
- 浮点型在内存中的存储解析
1. 数据类型介绍
char | 字符数据类型 1B |
short | 短整型2B |
int | 整形4B |
long | 长整型8B |
long long | 更长的整形8B |
float | 单精度浮点数4B |
double | 双精度浮点数8B |
不同的类型代表了在内存中开辟的空间大小不同所能表示的数据范围不同
1.1 类型的基本归类:
整形家族:
- char
- unsigned char
- signed char
- short
- unsigned short [int]
- signed short [int]
- int
- unsigned int
- signed int
- long
- unsigned long [int]
- signed long [int]
浮点数家族:
- float
- double
- 构造类型:(自定义棱形)
- > 数组类型
- > 结构体类型 struct
- > 枚举类型 enum
- > 联合类型 union
指针类型
- int *pi;
- char *pc;
- float* pf;
- void* pv;
空类型:
- void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
2.整形在内存中的存储
2.1原码、反码、补码
原码 | 直接将十进制按照正负数的形式翻译成二进制就可以。 |
反码 | 将原码的符号位不变,其他位依次按位取反就可以得到了。 补码 |
补码 | 反码+1就得到补码。 |
- 正数的原、反、补码都相同。
- 对于整形来说:数据存放内存中其实存放的是补码。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,
可以将符号位和数值域统一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,
其运算过程是相同的(都可以符号位不变,其它位取反然后+1),不需要额外的硬件电路。
1+(-1)就为
00000000000000000000000000000001
+ 11111111111111111111111111111111
= 100000000000000000000000000000000
00000000000000000000000000000000
最前面的1移位后移除寄存器
2.2大小端介绍
大端(存储)模式,
- 是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,
- 是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
为什么有大端和小端:
- 这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),
- 另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
- 例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。
- 对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
3.浮点型在内存中的存储
3.1常见的浮点数:
- 3.14159 1E10
- 浮点数家族包括: float、double、long double 类型。
- 浮点数表示的范围:float.h中定义。
3.2 浮点数存储规则
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
- 十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。
- 十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。
IEEE 754规定:
- 对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
- 对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。