热成像目标检测数据集V2版本,并提供使用YOLOv8训练该数据集的详细步骤和代码。
数据集介绍
- 数据集概述
数据集名称:热成像目标检测数据集V2
图像数量:总计26,442帧
9,233个可见光图像
9,711个热成像图像
7,498个匹配的热成像/可见光视频帧
标注目标数量:520,000个
标注物类别:包括人、自行车、汽车、摩托车、巴士、火车、卡车、灯、消防栓、交通标志、狗、滑板、婴儿车、电动踏板、其他车辆
数据集划分:已划分好训练集、验证集和测试集 - 数据集结构
假设你的数据集已经按照以下结构组织:
深色版本
thermal_detection_dataset_v2/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
└── labels/
├── train/
├── val/
└── test/
每个文件夹中包含对应的图像文件和标签文件。确保所有图像文件都是.jpg或.png格式,而标签文件是.txt格式,并且它们的名字与对应的图像文件相同。
数据集配置文件
创建一个数据集配置文件(如thermal_detection_dataset_v2.yaml),该文件定义了数据集的基本信息,包括路径、类别等。示例配置如下:
yaml
深色版本
训练和验证的数据集路径
train: thermal_detection_dataset_v2/images/train
val: thermal_detection_dataset_v2/images/val
test: thermal_detection_dataset_v2/images/test
类别名称
names:
0: person
1: bicycle
2: car
3: motorcycle
4: bus
5: train
6: truck
7: light
8: fire_hydrant
9: traffic_sign
10: dog
11: skateboard
12: stroller
13: electric_scooter
14: other_vehicle
类别数量
nc: 15
训练模型
- 安装依赖
确保你的开发环境中安装了必要的软件和库。YOLOv8是基于PyTorch框架的,因此你需要安装Python以及PyTorch。
安装Python(推荐3.7或更高版本)
安装PyTorch:你可以从PyTorch官方网站获取安装命令,根据你的系统配置选择合适的安装方式。
克隆YOLOv8的官方仓库到本地,并安装项目所需的其他依赖:
bash
深色版本
git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip install -r requirements.txt
2. 训练模型
在完成上述准备工作后,你可以开始训练模型了。打开终端,进入YOLOv8项目的根目录,运行训练命令:
bash
深色版本
python ultralytics/yolo/v8/detect/train.py --data thermal_detection_dataset_v2.yaml --cfg yolov8.yaml --weights yolov8x.pt --batch-size 16 --epochs 100
这里:
–data 参数指定了数据集配置文件的路径。
–cfg 参数指定了模型配置文件。
–weights 参数用于指定预训练权重的路径,这有助于加速训练过程并提高最终模型的性能。
–batch-size 和 --epochs 分别设置了批量大小和训练轮数。
模型评估
训练完成后,可以通过验证集来评估模型的性能。YOLOv8提供了方便的命令来进行模型评估:
bash
深色版本
python ultralytics/yolo/v8/detect/val.py --data thermal_detection_dataset_v2.yaml --weights runs/train/exp/weights/best.pt
这里,best.pt 是训练过程中保存的最佳模型权重文件。
模型推理
你可以使用训练好的模型进行推理,检测新的图像中的目标。示例命令如下:
bash
深色版本
python ultralytics/yolo/v8/detect/predict.py --source path/to/your/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.25
这里:
–source 参数指定了要检测的图像路径。
–conf 参数设置了置信度阈值,低于该阈值的检测结果将被忽略。
注意事项
数据增强:为了提高模型的泛化能力,可以考虑使用数据增强技术,如随机裁剪、翻转、颜色抖动等。
超参数调整:根据训练过程中观察到的损失值和验证集上的性能,适当调整学习率、批量大小等超参数。
硬件资源:如果显存不足,可以减少批量大小或使用更小的模型变体。
多尺度训练:可以尝试多尺度训练,以提高模型对不同尺度目标的检测能力。
进一步优化
数据预处理:确保图像质量和尺寸一致,可以使用图像增强技术提高模型的鲁棒性。
模型选择:根据实际需求选择合适的YOLOv8模型变体,如yolov8s、yolov8m、yolov8l等。
多GPU训练:如果有多块GPU,可以使用多GPU训练来加速训练过程。
示例代码
- 数据集转换(如果需要)
假设你的标签文件已经是YOLO格式,可以直接跳过这一步。如果需要从其他格式(如COCO格式)转换,可以参考以下代码:
python
深色版本
import os
import json
import cv2
def convert_coco_to_yolo(coco_annotation_file, output_dir, image_dir):
with open(coco_annotation_file, ‘r’) as f:
coco_data = json.load(f)
image_id_to_filename = {image['id']: image['file_name'] for image in coco_data['images']}
category_id_to_name = {category['id']: category['name'] for category in coco_data['categories']}
category_name_to_id = {v: k for k, v in category_id_to_name.items()}
for annotation in coco_data['annotations']:
image_id = annotation['image_id']
image_filename = image_id_to_filename[image_id]
image_path = os.path.join(image_dir, image_filename)
image = cv2.imread(image_path)
image_height, image_width, _ = image.shape
category_id = annotation['category_id']
category_name = category_id_to_name[category_id]
category_id = category_name_to_id[category_name]
bbox = annotation['bbox']
x_center = (bbox[0] + bbox[2] / 2) / image_width
y_center = (bbox[1] + bbox[3] / 2) / image_height
width = bbox[2] / image_width
height = bbox[3] / image_height
yolo_annotation = f"{category_id} {x_center} {y_center} {width} {height}"
output_file = os.path.join(output_dir, os.path.splitext(image_filename)[0] + '.txt')
with open(output_file, 'a') as f:
f.write(yolo_annotation + '\n')
示例用法
convert_coco_to_yolo(‘path/to/coco/annotations.json’, ‘path/to/output/labels’, ‘path/to/images’)
2. 训练脚本
确保你已经将数据集和配置文件准备好,然后运行以下训练脚本:
bash
深色版本
进入YOLOv8项目目录
cd ultralytics
训练模型
python ultralytics/yolo/v8/detect/train.py --data thermal_detection_dataset_v2.yaml --cfg yolov8.yaml --weights yolov8x.pt --batch-size 16 --epochs 100
3. 评估脚本
训练完成后,评估模型性能:
bash
深色版本
python ultralytics/yolo/v8/detect/val.py --data thermal_detection_dataset_v2.yaml --weights runs/train/exp/weights/best.pt
4. 推理脚本
使用训练好的模型进行推理:
bash
深色版本
python ultralytics/yolo/v8/detect/predict.py --source path/to/your/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.25
希望以上信息对你有所帮助