Fields of The World (FTW) 是一个面向农业田地边界实例分割的基准数据集,旨在推动机器学习模型的发展,满足全球农业监测对高精度、可扩展的田地边界数据的需求。该数据集由@kerner-lab提供,于2024年8月28日发布,主要特征包括:
-
广泛的地理覆盖:跨越欧洲、非洲、亚洲和南美洲的24个国家,覆盖多样化的农业景观,有助于模型泛化至不同农业实践和田地类型。
-
大规模数据集:包含约160万田块边界及7万多个样本,每个样本包含实例和语义分割掩膜,搭配多时间、多光谱的Sentinel-2卫星图像,支持详细的时间和光谱分析。
-
多类别分割:提供实例分割掩膜(识别单个田地)和语义分割掩膜,包括背景、多边形(田地)、边界等类别。
-
光谱和时间丰富性:数据集包含红、绿、蓝和近红外光谱波段,并提供多时间图像,捕捉生长期的不同阶段,图像日期通过USDA作物日历和云量筛选确定。
-
完善的数据集划分:数据集按训练、验证和测试集划分,使用块状随机分割策略避免空间自相关,确保模型评估的准确性。
-
详尽的元数据与文档:提供关于国家、作物类型、季节、收集年份、网格结构等关键信息,帮助用户有效使用数据集。
下载链接:https://source.coop/repositories/kerner-lab/fields-of-the-world/description
数据可以直接Download下载,也可以通过AWS 批量下载。