好的,以下是训练树叶分类识别YOLOv5模型的关键代码部分。我们将重点放在数据集加载、模型加载、训练配置和训练过程上。
1. 数据集配置文件 (data.yaml
)
首先,确保你有一个正确的数据集配置文件 data.yaml
,内容如下:
# data.yaml
train: Leaf-Classification-Dataset/images/train
val: Leaf-Classification-Dataset/images/val
nc: 10 # 类别数量
names: ['梧桐', '银杏', '樟叶', '杜鹃', '桂叶', '广玉兰', '木槿', '枫叶', '松叶', '竹叶'] # 类别名称
2. 训练脚本 (train_yolov5.py
)
接下来是训练脚本的关键部分:
# train_yolov5.py
import torch
from yolov5.models.experimental import attempt_load
from yolov5.utils.datasets import create_dataloader
from yolov5.utils.general import check_img_size, increment_path
from yolov5.utils.torch_utils import select_device, time_synchronized
from yolov5.train import train
def train_model(data_yaml_path, model_config, epochs, batch_size, img_size, device):
# 选择设备
device = select_device(device)
# 加载预训练的YOLOv5模型
model = attempt_load(model_config, map_location=device)
# 设置数据集路径
data_path = data_yaml_path
# 开始训练
train(
data=data_path,
epochs=epochs, # 训练周期数
batch_size=batch_size, # 每批样本数量
imgsz=img_size, # 输入图像尺寸
name="yolov5_leaf_classification", # 输出模型的名字
patience=10, # 提早停止的耐心参数
workers=4, # 工作线程数
device=device # 设备(CPU或GPU)
)
if __name__ == "__main__":
data_yaml_path = 'data.yaml'
model_config = 'yolov5s.pt' # 你可以选择其他预训练模型,如'yolov5m.pt', 'yolov5l.pt'等
epochs = 100
batch_size = 16
img_size = 640
device = '0' # 使用GPU,如果需要使用CPU,可以改为'cpu'
train_model(data_yaml_path, model_config, epochs, batch_size, img_size, device)
3. 关键代码解释
选择设备
device = select_device(device)
select_device(device)
: 选择训练设备,可以是CPU或GPU。
加载预训练模型
model = attempt_load(model_config, map_location=device)
attempt_load(model_config, map_location=device)
: 加载预训练的YOLOv5模型。
开始训练
train(
data=data_path,
epochs=epochs, # 训练周期数
batch_size=batch_size, # 每批样本数量
imgsz=img_size, # 输入图像尺寸
name="yolov5_leaf_classification", # 输出模型的名字
patience=10, # 提早停止的耐心参数
workers=4, # 工作线程数
device=device # 设备(CPU或GPU)
)
train(...)
: 调用YOLOv5的训练函数,传入训练配置参数。
4. 运行训练脚本
确保你的数据集路径和类别信息正确无误后,运行训练脚本:
python train_yolov5.py
5. 注意事项
- 数据集路径:确保数据集路径正确,特别是
data.yaml
文件中的路径。 - 模型配置:确保模型配置文件路径正确。
- 图像大小:
img_size
可以根据实际需求调整,通常使用640或1280。 - 设备:确保设备(CPU或GPU)可用。
- 超参数调整:根据实际情况调整训练参数,如学习率、批量大小等,以获得最佳训练效果。