如何使用YOLOv8训练车型识别和检测数据集 汽车分类检测数据集 并实现可实现及评估 2026张图片数据,已标注好,jpg与xml一一对应该数据集分为7类 用于yolo目标检测的训练

车型识别车型检测数据集在这里插入图片描述

车型识别车型检测数据集,用于目标检测在这里插入图片描述

2026张图片数据,已标注好,jpg与xml一一对应
该数据集分为7类,分别有小型车,中型车,大型车,小型卡车,大型卡车,油罐车,特种车在这里插入图片描述
好的,下面是使用YOLOv8训练车型识别和检测数据集的详细步骤。假设你的数据集已经按照YOLO格式进行了标注,并且每个类别都有对应的XML文件。

数据集结构

假设你的数据集目录结构如下:

vehicle_detection_dataset/
├── images/
│   ├── img_00001.jpg
│   ├── img_00002.jpg
│   └── ...
└── labels/
    ├── img_00001.txt
    ├── img_00002.txt
    └── ...

创建配置文件 data.yaml

首先,创建一个配置文件 data.yaml 来描述数据集:

train: ./vehicle_detection_dataset/images
val: ./vehicle_detection_dataset/images

nc: 7  # 类别数量
names: ['small_car', 'medium_car', 'large_car', 'small_truck', 'large_truck', 'tanker_truck', 'special_vehicle']  # 替换为实际的类别名称

安装必要的库

确保你已经安装了YOLOv8和其他必要的Python库:

pip install ultralytics opencv-python-headless numpy xml.etree.ElementTree

准备数据集

由于你的数据集是以XML格式标注的,我们需要将这些XML文件转换为YOLO格式的边界框标注。这里我们提供一个脚本来完成这一任务。

脚本:将XML标注转换为YOLO格式的边界框标注

更新配置文件 data.yaml

更新 data.yaml 文件以包含新的标注路径:

train: ./vehicle_detection_dataset/images
val: ./vehicle_detection_dataset/images

nc: 7  # 类别数量
names: ['small_car', 'medium_car', 'large_car', 'small_truck', 'large_truck', 'tanker_truck', 'special_vehicle']  # 类别名称

train_labels: ./vehicle_detection_dataset/labels
val_labels: ./vehicle_detection_dataset/labels

编写训练脚本

下面是一个完整的训练脚本,用于使用YOLOv8训练车型识别和检测数据集:

运行训练脚本

将上述代码保存为一个Python文件(例如 train_vehicle_detection.py),然后在终端中运行:

python train_vehicle_detection.py

解释

  1. 加载预训练模型: 使用 YOLO('yolov8n.pt') 加载YOLOv8的小型预训练模型。你可以根据需要选择其他大小的模型(如 yolov8s, yolov8m, yolov8l, yolov8x)。
  2. 开始训练: 使用 model.train() 方法启动训练过程。参数包括数据集路径、训练轮数、批量大小、图像大小等。
  3. 验证模型: 使用 model.val() 方法评估模型在验证集上的表现。
  4. 测试模型: 使用 model.predict() 方法对测试集进行预测,并打印预测结果。

可视化预测结果

使用 model.predict()

YOLOv8 提供了 model.predict() 方法来对图像进行预测,并返回预测结果。我们可以使用 OpenCV 或其他库来可视化这些预测结果。

以下是一个完整的脚本,用于加载训练好的模型并对测试集中的图像进行预测和可视化:

解释

  1. 加载训练好的模型: 使用 YOLO('runs/detect/vehicle_detection/exp/weights/best.pt') 加载训练好的模型。
  2. 遍历测试集中的所有图像: 使用 Path('./vehicle_detection_dataset/images').glob('*.jpg') 获取所有测试图像路径。
  3. 进行预测: 使用 model.predict() 方法对每张图像进行预测,并设置置信度阈值。
  4. 获取预测结果: 从预测结果中提取边界框、置信度和类别ID。
  5. 读取图像: 使用 cv2.imread() 读取图像。
  6. 绘制边界框: 使用 cv2.rectangle()cv2.putText() 在图像上绘制边界框和标签。
  7. 保存结果图像: 将处理后的图像保存到指定的输出目录。

运行脚本

将上述代码保存为一个Python文件(例如 evaluate_and_visualize_vehicle_detection.py),然后在终端中运行:

python evaluate_and_visualize_vehicle_detection.py

结果

运行脚本后,你会在 ./vehicle_detection_dataset/output 目录中看到带有预测结果的图像。这些图像会在检测到的车辆上绘制绿色的边界框和标签。

通过这些步骤,你可以全面地评估和可视化你的车型识别和检测模型的表现。如果需要进一步优化模型,可以根据评估结果调整超参数或增加数据增强技术。

### 使用YOLOv8实现车辆识别 #### 准备工作 为了使用YOLOv8进行车辆识别,需先安装Ultralytics库下载预训练模型。通过Python环境管理工具如`pip`来安装必要的依赖项。 ```bash pip install ultralytics ``` #### 加载预训练模型 加载官方提供的预训练权重文件,这一步骤对于快速启动项目至关重要。这里采用的是针对一般物体检测优化过的YOLOv8模型。 ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 或者其他版本 yolov8s, yolov8m等 ``` #### 数据准备 构建适合于车辆识别数据集是提升模型表现的基础。数据集中应包含大量标注好的图片样本,这些样本要尽可能覆盖各种光照条件、天气状况以及不同的拍摄角度下的车辆图像[^3]。 #### 自定义配置调整 考虑到不同地区车牌样式差异较大,在实际应用中可能需要对默认设置做一些修改以适应本地化需求。比如调整输入尺寸、锚框比例等参数,使得模型更贴合具体应用场景的要求[^1]。 #### 训练过程 利用上述准备工作完成后得到的数据集来进行模型微调(Fine-tuning)。此阶段会根据自定义的任务特点重新训练网络的最后一层甚至更多层数,从而让模型学会区分各别的车辆特征。 ```python results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640) ``` #### 推理预测 当模型经过充分训练之后就可以进入推理环节了。此时只需提供待测图片路径给到已经训练完毕的YOLOv8实例即可获得检测结果。 ```python predictions = model.predict(source='image.jpg') for pred in predictions: boxes = pred.boxes.cpu().numpy() print(boxes) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值