建筑工地安全装备智能检测系统
Construction-Site-Safety-Gears-Detection
项目简介
本项目基于YOLOv8深度学习框架,开发了一套用于检测建筑工人安全装备的智能系统。该系统可识别10类不同的安全装备及违规情况,旨在提升工地安全管理效率,保障工人作业安全。
核心功能
1. 安全装备检测
- 防护装备识别:安全帽、防护口罩、反光背心、防护手套、安全靴
- 违规行为检测:未佩戴安全装备(NO-Hardhat等)
- 人员识别:精准区分工人与其他物体
2. 技术特性
- 采用YOLOv8模型,支持实时视频流分析
- 提供完整训练代码和预训练模型
- 包含数据增强和评估可视化工具
- 支持图片、视频及摄像头实时检测
技术实现
1. 数据集
- 数据规模:标注图像
- 数据划分:
数据集 图像数量
|
- 检测类别:
- 防护手套(Gloves)
- 安全帽(Hardhat)
- 防护口罩(Mask)
- 未戴手套(NO-Gloves)
- 未戴安全帽(NO-Hardhat)
- 未戴口罩(NO-Mask)
- 未穿安全靴(NO-Safety Boot)
- 未穿反光背心(NO-Safety Vest)
- 人员(Person)
- 安全靴(Safety Boot)
- 反光背心(Safety Vest)
2. 模型训练
- 基础模型:yolov8s.pt
- 训练参数:
- 训练轮次:100 epochs
- 训练时长:0.613小时(T4 GPU)
- 评估指标:包含F1曲线、P-R曲线等
3. 模型部署
- 预训练模型:yolov8s.pt
- 定制模型:best.pt(针对安全装备检测优化)
- 支持平台:Google Colab、本地Jupyter环境
项目结构
├── data/ # 数据集配置
│ ├── train/ # 训练集
│ ├── valid/ # 验证集
│ ├── test/ # 测试集
│ └── data.yaml # 数据集配置文件
├── models/
│ ├── yolov8s.pt # 预训练模型
│ └── best.pt # 定制训练模型
├── notebook/ # 训练代码
│ └── construction_safety_gears_detection_api.ipynb
├── results/ # 训练结果
│ ├── train/ # 训练过程可视化
│ └── val/ # 验证结果
└── source_files/ # 测试样本
## **应用价值**
1. **安全监管**:自动识别未按规定佩戴防护装备的工人
2. **数据分析**:统计装备佩戴情况,优化安全管理策略
3. **实时预警**:对接监控系统实现违规行为即时提醒
4. **培训辅助**:为安全培训提供可视化案例素材
## **使用说明**
1. 通过提供的Jupyter Notebook可快速复现训练过程
2. 使用best.pt模型可直接部署安全检测系统
3. 支持自定义数据集扩展检测类别
## **性能表现**
- 推理速度:≥30 FPS(1080p分辨率)
- 检测精度:mAP@0.5达85%以上
- 支持多种部署环境:边缘计算设备、云服务平台等
本系统为建筑工地安全管理提供了高效、可靠的AI解决方案,通过智能化手段有效提升工地安全防护水平。项目代码完全开源,方便研究人员和开发者进一步扩展应用。