无人机杂草检测分割

无人机杂草检测论文代码

**《基于深度学习的无人机正射影像杂草实例分割》

UAV-weed-detection-paper

数据获取

数据集可在[Zonedo平台]获取
在这里插入图片描述

数据集说明

  • annotation_json_raw/
    原始标注文件(由Anylabeling生成)
  • yolo_format/
    YOLO训练格式数据(通过code/yolo/json2yolo.py转换)
    • SR&SR_multi/:经Real-ESRGAN和Waifu2x-Extension-GUI超分辨率重建的数据
  • maskrcnn_format/
    Mask RCNN训练格式数据(通过json2coco.zip内脚本转换)
  • plots_img/
    地块样本图像(从正射影像裁剪,尺寸1000×3000像素)
    在这里插入图片描述

训练与预测

  • YOLOv8:基于Ultralytics框架训练
  • Mask RCNN:基于Detectron2框架训练
    (注:Mask RCNN权重文件过大,已通过Release发布)
    在这里插入图片描述

实验结果

包含训练权重、参数和评估结果:

  • results/yolo/predict/predict_plots_both/
    使用results/yolo/train/SR/weights/best.pt权重预测的结果
    • 通过YOLOv8分割每个地块的马铃薯和杂草
    • labels/内.txt文件包含各目标坐标信息
    • 使用code/yolo/mask_area.py计算马铃薯/杂草覆盖面积
  • 统计分析
    通过code/yolo/regression.py进行多元线性回归

(注:保留专业术语如YOLO/Mask RCNN/Detectron2等英文原名,关键路径保持原格式,超分辨率工具名维持英文专业表述)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值