基于YOLOv10与华为Atlas 200的远程无人机绝缘子缺陷检测系统

基于YOLOv10与华为Atlas 200的远程绝缘子检测系统

项目概述

开发了一套边缘计算驱动的绝缘子缺陷检测系统,通过YOLOv10模型与华为Atlas 200硬件协同实现高效推理,并模拟电力场景中的服务器-边缘设备通信。
在这里插入图片描述

技术实现
  1. 模型训练

    • 使用YOLOv10s.pt预训练模型,在绝缘子数据集(来源见下文)上微调,生成专用检测模型。
    • 训练脚本:train_v10.py,数据集划分工具:train_val_split.py
  2. 模型部署

    • 通过华为ATC工具链将模型转换为.om格式,适配Atlas 200 NPU。
    • 转换流程:.pt.onnxtrans.py) → .om(ATC工具)。
  3. 边缘推理

    • 图像预处理后,调用华为NPU API进行推理,输出结果经NMS和坐标后处理,生成绝缘子缺陷信息。
    • 边缘端程序:predict_phots.py(需确认是否为predict_photos.py笔误)。
  4. 通信模拟

    • 服务器端(PC):运行receive_error.py接收检测结果。
    • 边缘端(Atlas 200):通过TCP协议与服务器交互,发送/接收检测任务与结果。
数据集

在这里插入图片描述

项目结构
├── trained_weights/    # 训练好的模型权重
├── predict_phots.py    # 边缘设备检测程序(疑似命名纠错)
├── receive_error.py    # 服务器接收程序
├── train_v10.py        # YOLOv10训练脚本
├── train_val_split.py  # 数据集划分工具
└── trans.py            # 模型格式转换工具

在这里插入图片描述

效果展示

系统可实时检测绝缘子缺陷,并通过TCP协议实现服务器与边缘端的数据交互,模拟电力巡检中的远程监控场景。


关键改进建议

  1. 文件名纠错:检查predict_phots.py是否为predict_photos.py
  2. 通信细节:补充TCP报文格式或协议设计说明。
  3. 性能指标:添加推理速度(FPS)、准确率(mAP)等量化结果。

如需进一步细化某部分内容,可随时说明!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值