袋装物品线体追踪计数系统操作指南
YOLOv11袋装物品线体追踪计数系统介绍
YOLOv11袋装物品线体追踪计数系统是基于最新YOLOv11算法开发的智能视觉检测解决方案,yolo-bag-tracking专门用于工业生产线上袋装物品的实时追踪与数量统计。该系统通过深度学习技术,能够准确识别传送带上的各类包装袋,并实现高精度的计数功能。
核心功能特点
-
高精度检测:采用改进的YOLOv11算法,对各类包装袋的识别准确率可达98%以上,包括不同材质(编织袋、纸袋、塑料袋)和颜色。
-
实时追踪:系统支持30-60FPS的处理速度,可完美匹配高速生产线节奏,实时追踪每个包装袋的运动轨迹。
-
智能计数:通过先进的物体重识别算法,有效避免重复计数,确保统计结果的准确性,计数误差率低于0.5%。
-
多场景适应:系统经过特殊优化,能够适应不同光照条件(强光、弱光、反光)和复杂背景环境。
技术优势
- 采用YOLOv11最新网络结构,在保持实时性的同时提升小目标检测能力
- 融合DeepSORT算法实现稳定物体追踪
- 使用注意力机制增强特征提取能力
- 针对工业场景优化的数据增强策略
应用场景
该系统广泛应用于食品加工、化工生产、物流分拣等领域,特别适用于:
- 生产线包装袋质量检测
- 自动装车数量统计
- 仓储物流出入库管理
- 生产流程监控与数据分析
系统部署灵活,既支持本地GPU服务器运行,也可通过Docker容器快速部署到工业计算机,满足不同规模企业的智能化升级需求。
Docker方式运行
- 启动模型服务
docker compose up -d
- 进入容器终端
docker exec -it yolo-bag-tracking-app-1 /bin/bash
- 训练模型
python train.py
- 执行追踪计数(默认输入目录:video/input,输出目录:video/output)
python track.py -i <输入文件夹路径> -o <输出文件夹路径>
Python环境运行
- 配置Python 3.10.16环境
python -m venv venv
venv\Scripts\activate
- 安装依赖库
python install -r requirements.txt
- 训练模型
python train.py
- 执行追踪计数(默认输入目录:video/input,输出目录:video/output)
python track.py -i <输入文件夹路径> -o <输出文件夹路径>
故障处理
当train.py报错数据集目录错误时,请修改settings.json配置文件:
{
...
"datasets_dir": "datasets",
...
}
环境更新
pip freeze > requirements.txt