yolo输送带包装物品跟踪与计数项目(计算机视觉项目101期)

袋装物品线体追踪计数系统操作指南

YOLOv11袋装物品线体追踪计数系统介绍

YOLOv11袋装物品线体追踪计数系统是基于最新YOLOv11算法开发的智能视觉检测解决方案,yolo-bag-tracking专门用于工业生产线上袋装物品的实时追踪与数量统计。该系统通过深度学习技术,能够准确识别传送带上的各类包装袋,并实现高精度的计数功能。
在这里插入图片描述

核心功能特点

  1. 高精度检测:采用改进的YOLOv11算法,对各类包装袋的识别准确率可达98%以上,包括不同材质(编织袋、纸袋、塑料袋)和颜色。

  2. 实时追踪:系统支持30-60FPS的处理速度,可完美匹配高速生产线节奏,实时追踪每个包装袋的运动轨迹。

  3. 智能计数:通过先进的物体重识别算法,有效避免重复计数,确保统计结果的准确性,计数误差率低于0.5%。

  4. 多场景适应:系统经过特殊优化,能够适应不同光照条件(强光、弱光、反光)和复杂背景环境。
    在这里插入图片描述

技术优势

  • 采用YOLOv11最新网络结构,在保持实时性的同时提升小目标检测能力
  • 融合DeepSORT算法实现稳定物体追踪
  • 使用注意力机制增强特征提取能力
  • 针对工业场景优化的数据增强策略

应用场景

该系统广泛应用于食品加工、化工生产、物流分拣等领域,特别适用于:

  • 生产线包装袋质量检测
  • 自动装车数量统计
  • 仓储物流出入库管理
  • 生产流程监控与数据分析

系统部署灵活,既支持本地GPU服务器运行,也可通过Docker容器快速部署到工业计算机,满足不同规模企业的智能化升级需求。

Docker方式运行

  1. 启动模型服务
docker compose up -d
  1. 进入容器终端
docker exec -it yolo-bag-tracking-app-1 /bin/bash

在这里插入图片描述

  1. 训练模型
python train.py
  1. 执行追踪计数(默认输入目录:video/input,输出目录:video/output)
python track.py -i <输入文件夹路径> -o <输出文件夹路径>

Python环境运行

  1. 配置Python 3.10.16环境
python -m venv venv
venv\Scripts\activate
  1. 安装依赖库
python install -r requirements.txt
  1. 训练模型
python train.py
  1. 执行追踪计数(默认输入目录:video/input,输出目录:video/output)
python track.py -i <输入文件夹路径> -o <输出文件夹路径>

故障处理

当train.py报错数据集目录错误时,请修改settings.json配置文件:

{
    ...
    "datasets_dir": "datasets",
    ...
}

环境更新

pip freeze > requirements.txt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值