课堂手机检测系统使用YOLOv8
项目概述
在这个项目中,我们旨在开发一个高效的系统,利用YOLOv8物体检测模型检测课堂环境中的手机使用情况。主要目标是通过识别手机的存在来监控和确保课堂期间的最小干扰。YOLOv8因其速度和准确性而广泛应用于此任务。
数据集
手机使用数据集
该数据集包含了在我们大学不同真实课堂场景中捕捉的图像,并注释了手机的存在。原始数据包括通过闭路电视摄像头捕捉的讲座视频,总时长为14小时32分钟。这些讲座视频被整理成5-12分钟的片段,展示了手机使用的高频活动。共从这些视频中提取了253帧。此数据集被划分为训练集和验证集,以便有效地训练YOLOv8模型。
桌面数据集
此数据集包含212帧空教室图像,没有学生或教授的活动。该数据集的目的是训练一个模型,使其能够识别课堂中的桌子/长椅,并且根据其y坐标(通过在此数据集上训练的模型推理得出)进行索引。
数据集中的标注图像
图1:标注图像,展示了课堂上有学生和手机。
图2:标注图像,展示了空教室的桌面布局。
模型训练
我们使用了YOLOv8s(小型)、YOLOv8m(中型)、YOLOv8l(大型)模型来进行此任务。模型经过若干轮训练,并通过改变训练轮数来进行微调,观察训练和验证损失图表中的正负变化。表现最佳的模型是YOLOv8m,经过55轮训练,优化了mAP(同时优化了精度和召回率)。该模型在mAP50上达到了89.5%。
训练配置
模型:YOLOv8m(中型)
轮数:55
批次大小:16(默认自适应批次)
优化器:Adam(默认)
图像大小:640
学习率:0.001(自适应)
训练图表
图3:YOLOv8m(55轮)的训练图表。
预测结果
训练完成后,模型在验证集上进行了评估。通过计算精度、召回率和mAP(均值平均精度)等性能指标来评估模型的效果。
预测图像
图4:YOLOv8m(55轮)模型的预测,展示了教室中检测到的手机。
结果
下表总结了YOLOv8m模型在各项评估指标上的表现。
轮数 | 时间(小时) | 精度 | 召回率 | mAP50 | mAP50-95 |
---|---|---|---|---|---|
30 | 0.113 | 0.857 | 0.782 | 0.864 | 0.552 |
45 | 0.171 | 0.843 | 0.809 | 0.873 | 0.568 |
50 | 0.188 | 0.842 | 0.775 | 0.873 | 0.563 |
55 | 0.202 | 0.844 | 0.835 | 0.895 | 0.581 |
60 | 0.236 | 0.842 | 0.793 | 0.880 | 0.581 |
表1:YOLOv8m训练结果。
结论
YOLOv8m模型在检测课堂环境中的手机使用方面表现出了很有前景的结果。凭借高mAP值,它证明了在教育环境中减少干扰的有效性。未来的工作可能包括进一步微调模型,并探索在课堂中的实时部署。
参考文献
YOLOv8文档:YOLOv8
数据集来源:定制课堂手机数据集