YOLOv8课堂手机检测系统

课堂手机检测系统使用YOLOv8

项目概述

在这个项目中,我们旨在开发一个高效的系统,利用YOLOv8物体检测模型检测课堂环境中的手机使用情况。主要目标是通过识别手机的存在来监控和确保课堂期间的最小干扰。YOLOv8因其速度和准确性而广泛应用于此任务。
在这里插入图片描述

数据集

手机使用数据集
该数据集包含了在我们大学不同真实课堂场景中捕捉的图像,并注释了手机的存在。原始数据包括通过闭路电视摄像头捕捉的讲座视频,总时长为14小时32分钟。这些讲座视频被整理成5-12分钟的片段,展示了手机使用的高频活动。共从这些视频中提取了253帧。此数据集被划分为训练集和验证集,以便有效地训练YOLOv8模型。

桌面数据集

此数据集包含212帧空教室图像,没有学生或教授的活动。该数据集的目的是训练一个模型,使其能够识别课堂中的桌子/长椅,并且根据其y坐标(通过在此数据集上训练的模型推理得出)进行索引。

数据集中的标注图像

图1:标注图像,展示了课堂上有学生和手机。
在这里插入图片描述

图2:标注图像,展示了空教室的桌面布局。

模型训练

我们使用了YOLOv8s(小型)、YOLOv8m(中型)、YOLOv8l(大型)模型来进行此任务。模型经过若干轮训练,并通过改变训练轮数来进行微调,观察训练和验证损失图表中的正负变化。表现最佳的模型是YOLOv8m,经过55轮训练,优化了mAP(同时优化了精度和召回率)。该模型在mAP50上达到了89.5%。

训练配置
模型:YOLOv8m(中型)
轮数:55
批次大小:16(默认自适应批次)
优化器:Adam(默认)
图像大小:640
学习率:0.001(自适应)

训练图表

图3:YOLOv8m(55轮)的训练图表。
在这里插入图片描述

预测结果
训练完成后,模型在验证集上进行了评估。通过计算精度、召回率和mAP(均值平均精度)等性能指标来评估模型的效果。

预测图像

图4:YOLOv8m(55轮)模型的预测,展示了教室中检测到的手机。

结果
下表总结了YOLOv8m模型在各项评估指标上的表现。

轮数时间(小时)精度召回率mAP50mAP50-95
300.1130.8570.7820.8640.552
450.1710.8430.8090.8730.568
500.1880.8420.7750.8730.563
550.2020.8440.8350.8950.581
600.2360.8420.7930.8800.581

表1:YOLOv8m训练结果。
在这里插入图片描述

结论

YOLOv8m模型在检测课堂环境中的手机使用方面表现出了很有前景的结果。凭借高mAP值,它证明了在教育环境中减少干扰的有效性。未来的工作可能包括进一步微调模型,并探索在课堂中的实时部署。

参考文献

YOLOv8文档:YOLOv8
数据集来源:定制课堂手机数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值