向量

向量

一、向量的线性运算

1.1定义

有向线段即为向量(有方向、有大小)

引入向量能干嘛?可以简化方程

例:

\[F_x(x)=ma_x\\ F_y(x)=ma_y\\ F_z(x)=ma_z\\ \]

这是三维各个方向上的向量公式,但是我们可以把它写成

\[\vec{F}=m\vec{a}\\ \]

这样就达到了简化方程的目的,更简单,但是内涵更加丰富

1.2向量的分类

1、自由向量(可以自由平移)
举例:位移 \(\Delta\vec{r}\) 、速度 \(\vec{v}\) 、加速度 \(\vec{a}\)
解释:因为我们不关心这个向量的位置,所以干脆让它自由平移算了。比如开高速的时候,我们考虑不要超速,那这时候我们只要考虑汽车的速度,把汽车想象成箭头(箭头越长,速度越快),那我们就不用考虑汽车的位置了,只要汽车在高速上,并且汽车不超速就可以就行。同样的,只要这个速度向量在我脑子里,而且我不关心它的位置,那它就能在我脑子里乱跑,但是大小和方向不变。

2、滑移向量(可以沿着某一方向平移)
举例:力 \(\vec{F}\)
解释:因为有一类向量,它的作用效果和作用位置是有一定差别的,力就是很典型的例子,但在某些情况下这个力可以沿着作用方向平移。我用一个力拉一个箱子,或者改用另外一个力推箱子,两者作用效果是相同的,因此我们可以看成这个力平移了一部分,但是作用结果却没变。

3、固定向量(不能平移)
举例:位矢 \(\vec{r}\)
解释:拿最一般的跑100m举例子,我们不得不关心运动员的位置了,因此我们从每个运动员的起点处开始,画一个箭头指向运动员现在的位置,因此我们就能判断出谁是第一了,因为谁的箭头在前谁就是第一了。这时候位矢就不能随便平移了。
tips:大家需要区分位移 \(\Delta\vec{r}\) 、位置的向量(位矢) \(\vec{r}\) 、位矢的变化量 \(\Delta r\) 的三个概念。

1.3向量的性质

(1)向量的大小

\[|\vec{A}|=A\\ \]

向量的大小,又叫向量的模。

(2)单位向量

\[\hat{A}=\frac{\vec{A}}{|\vec{A}|}\\ \]

\(\hat{A}\)只不过是一个方向向量,长度为1。之所以会出现它,是因为这时候我们只关心向量方向,把别的无用信息都抛掉了。(没错,这就叫简单粗暴)

1.4向量的线性运算

(1)数乘

\[\vec{A}=b\vec{C}\\ \]

简单地说, \(\vec{C}\) 扩大 \(b\) 倍就是 \(\vec{A}\) ,如果 \(b\) 是负数那就把 \(\vec{C}\) 反向。

(2)加减法

\[\vec{C}=\vec{A}+\vec{B}\\ \vec{D}=\vec{A}-\vec{B}\\ \]

img

加法不过是两个向量首尾相接,减法不过是其中一个向量反向后再首尾相接。

二、向量的点乘

2.1定义

两个向量点乘的结果为 \(C\) ( \(C\) 为实数)

\[C=\vec{A}\cdot\vec{B}=|\vec{A}||\vec{B}|\cos{\theta}\\ \]

tips:可以把点乘 \(\vec{A}\cdot\vec{B}\) 看作是 \(|\vec{A}|\) 乘上 \(\vec{B}\)\(\vec{A}\) 上的投影 \(|\vec{B}|\cos{\theta}\) ,或者是是 \(|\vec{B}|\) 乘上 \(\vec{A}\)\(\vec{B}\) 上的投影

2.2向量点乘的运算律

(1)结合律: \(\alpha\vec{A}\cdot\vec{B}=\alpha(\vec{A}\cdot\vec{B})\)

(2)交换律: \(\vec{A}\cdot\vec{B}=\vec{B}\cdot\vec{A}\)

(3)分配律: \((\vec{A_1}+\vec{A_2})\cdot\vec{B}=\vec{A_1}\cdot\vec{B}+\vec{A_2}\cdot\vec{B}\)

【例】证明余弦定理

img

\(θ\) 为内角,\(ψ\) 为外角

\(\vec{C}=\vec{A}+\vec{B}\) ,则有

\[|\vec{C}|^2=(\vec{A}+\vec{B})^2=(\vec{A}+\vec{B})(\vec{A}+\vec{B})\\ =\vec{A}^2+\vec{B}^2+\vec{A}\vec{B}+\vec{B}\vec{A}\\ =\vec{A}^2+\vec{B}^2+2\vec{A}\vec{B}\\ =|\vec{A}|^2+|\vec{B}|^2+2|\vec{A}||\vec{B}|\cos{\psi}\\ =|\vec{A}|^2+|\vec{B}|^2-2|\vec{A}||\vec{B}|\cos{\theta}\\ \]

三、向量的叉乘

3.1定义

两个向量叉乘的结果为 \(\vec{C}\) ( \(\vec{C}\) 为向量)

根据右手定则,把手腕放在两个向量的起点处,环握四指,大拇指向上,按照右手定则,依次绕过A向量和B向量,大拇指指向的就是C向量的方向:

\[|\vec{C}|=|\vec{A}\times\vec{B}|=|\vec{A}||\vec{B}|\sin{\theta}\\ \]

\(\vec{C}\) 的方向如下:

img

根据右手螺旋定则,右手环握,大拇指朝上直立。手腕放在A和B的起点处,四根手指保证先穿过A,再穿过B,则大拇指的方向即是向量C的方向。

tips:可以把叉乘 \(\vec{A}\times\vec{B}\) 看作是 \(|\vec{A}|\) 乘上 \(\vec{B}\)\(A\)上的高 \(|\vec{B}|\sin{\theta}\) ,或者是是 \(|\vec{B}|\) 乘上 \(\vec{A}\)\(\vec{B}\) 上的高 \(|\vec{B}|\sin{\theta}\) ,因此底乘高得到的就是面积了。不过这个结论在物理中用处不大,我们只关心 \(\vec{C}\) 的方向。

3.2向量叉乘的运算律

(1)结合律: \(\alpha\vec{A}\times\vec{B}=\alpha(\vec{A}\times\vec{B})\)

(2)负交换律: \(\vec{A}\times\vec{B}=-\vec{B}\times\vec{A}\)

(3)分配律: \((\vec{A_1}+\vec{A_2})\times\vec{B}=\vec{A_1}\times\vec{B}+\vec{A_2}\times\vec{B}\)

四、向量的坐标

4.1向量的坐标表示

定义 :向量的坐标形式表示为(在二维中就是两个坐标,在三维中就是三个坐标)

\[\vec{A}=(x_1,y_1) \\ \vec{A}=(x_1,y_1,z_1) \\ \]

那这是什么意思呢?(先以平面直角坐标系为例)

img

在二维中其实就是表示从 \((0,0)\) 指向 \(A(x,y)\) 的一个向量,同理在三维中就是表示从 \((0,0,0)\) 指向 \(A(x,y,z)\) 的一个向量

4.2向量的坐标表示的性质

(1) \(\vec{A}=\vec{B}\Longleftrightarrow(x_1,y_1,z_1)=(x_2,y_2,z_2)\Longleftrightarrow x_1=x_2,y_1=y_2,z_1=z_2\)

(2) \(\vec{A}=(x_1,y_1,z_1)\) 其中 \(x_1,y_1,z_1\) 与坐标系的选取有关(具体看4.3节)

(3) \(\vec{A}+\vec{B}=(x_1+x_2,y_1+y_2,z_1+z_2)\)

(4) \(c\vec{A}=(cx_1,cy_1,cz_1)\)

(5) \(\vec{A}\cdot\vec{B}=x_1x_2+y_1y_2+z_1z_2\)

(6) \(\vec{A}\times\vec{B}=\) ?(请看4.3节)

4.3基底

(1)基底的定义

三个沿着坐标轴的单位向量。通常记为 \(\hat{i},\hat{j},\hat{k}\)

(2)基底的作用

\[\vec{A}=(x_1,y_1,z_1) =x_1\hat{i}+y_1\hat{j}+z_1\hat{k}\\ \]

这样就可以利用交换律、结合律、分配律进行向量运算了。

(3)基底的基本运算

大家回忆一下点乘和叉乘的基本运算法则,我们可以得到:

\[\hat{i}\cdot\hat{i}=\hat{j}\cdot\hat{j}=\hat{k}\cdot\hat{k}=1\\ \hat{i}\times\hat{i}=\hat{j}\times\hat{j}=\hat{k}\times\hat{k}=0\\ \hat{i}\times\hat{j}=\hat{k},\hat{j}\times\hat{k}=\hat{i},\hat{k}\times\hat{i}=\hat{j}\\ \hat{j}\times\hat{i}=-\hat{k},\hat{k}\times\hat{j}=-\hat{i},\hat{i}\times\hat{k}=-\hat{j}\\ \]

(4)基底的向量运算

① 向量的模

\[|\vec{A}|^2=(x\hat{i}+y\hat{j}+z\hat{k})(x\hat{i}+y\hat{j}+z\hat{k})\\ = x^2\hat{i}\cdot\hat{i}+xy\hat{i}\cdot\hat{j}+xz\hat{i}\cdot\hat{k} + yx\hat{j}\cdot\hat{j}+y^2\hat{j}\cdot\hat{j}+yz\hat{j}\cdot\hat{k} + zx\hat{k}\cdot\hat{i}+zy\hat{k}\cdot\hat{j}+z^2\hat{k}\cdot\hat{k}\\ =x^2+y^2+z^2\\ \]

②向量点乘

\[\vec{A}\cdot\vec{B}=(x_1\hat{i}+y_1\hat{j}+z_1\hat{k})(x_2\hat{i}+y_2\hat{j}+z_2\hat{k})\\ = x_1x_2\hat{i}\cdot\hat{i}+x_1y_2\hat{i}\cdot\hat{j}+x_1z_2\hat{i}\cdot\hat{k} + y_1x_2\hat{j}\cdot\hat{j}+y_1y_2\hat{j}\cdot\hat{j}+y_1z_2\hat{j}\cdot\hat{k} + z_1x_2\hat{k}\cdot\hat{i}+z_1y_2\hat{k}\cdot\hat{j}+z_1z_2\hat{k}\cdot\hat{k}\\ =x_1x_2+y_1y_2+z_1z_2\\ \]

③向量叉乘

\[\vec{A}\times\vec{B}=(x_1\hat{i}+y_1\hat{j}+z_1\hat{k})\times(x_2\hat{i}+y_2\hat{j}+z_2\hat{k})\\ = x_1x_2\hat{i}\times\hat{i}+x_1y_2\hat{i}\times\hat{j}+x_1z_2\hat{i}\times\hat{k} + y_1x_2\hat{j}\times\hat{j}+y_1y_2\hat{j}\times\hat{j}+y_1z_2\hat{j}\times\hat{k} + z_1x_2\hat{k}\times\hat{i}+z_1y_2\hat{k}\times\hat{j}+z_1z_2\hat{k}\times\hat{k}\\ =(y_1z_2-y_2z_1)\hat{i}+(z_1x_2-x_1z_2)\hat{j}+(x_1y_2-x_2y_1)\hat{k}\\ \]

这个公式在高中阶段不怎么会用到(但是可以背下来装一装,也可以用行列式,可以自行查找,浅尝辄止即可),不过从上面的两个式子我们可以发现,理论上已知两个向量求叉乘会比求点乘慢1~2倍。

五、总结

1、不仅要了解向量点乘和叉乘的基本算术定义,也就是点乘是两向量的模乘上角度余弦,叉乘是两向量的模乘上角度正弦

2、要关注到,点乘所得到的是一个数值(后面会学到,这是一个标量),叉乘所得到的是另一个向量

3、同时需要注意到向量叉乘的方向问题,遵循右手定则。

4、需要注意到基底的问题,只有在直角坐标系下运算才能把许多干扰项去掉,因此选对坐标系很重要。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值