高考数学中的泰勒展开

高考数学中的泰勒展开

引入

高考导数与函数和不等式密切相关,通过某点的泰勒展开我们可以用多项式估计某点附近的值。所以利用泰勒展开,可以在不等式和导数题起到很大的作用。在高考中泰勒展开式主要起到两点作用,一是估算,而是通过泰勒展开可以快速估算参数的取值范围。得到取值范围后,你大致可以猜到出题者的思路,对为后续的计算和推导起到很好的作用。

一些常用展开

下面是常用的泰勒展开,一般用前面的两到三项:

\[\begin{align} e^{x}&=\sum_{n=0}^{\infty}\frac{x^{n}}{n!}\\&=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}x^{n}+\cdots\\ \end{align} \]
\[\begin{align} \ln(1+x)&=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n+1}x^{n+1}\\&=x-\frac{1}{2}x^{2}+\frac{1}{3}x^{3}-\cdots+\frac{(-1)^{n}}{n+1}x^{n+1}+\cdots,x\in(-1,1]\\ \end{align} \]
\[\begin{align} (1+x)^{\alpha}&=1+\sum_{n=1}^{\infty}\frac{\displaystyle\prod_{m=\alpha}^{\alpha-n+1}m}{n!}x^{n}\\&=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^{2}+\cdots+\frac{\displaystyle\prod_{m=\alpha}^{\alpha-n+1}m}{n!}x^{n}+\cdots,x\in(-1,1)\\ \end{align} \]
\[\begin{align} \frac{1}{1-x}&=\sum_{n=0}^{\infty}x^{n}\\&=1+x+x^{2}+\cdots+x^{n}+\cdots,x\in(-1,1)\\ \frac{1}{1+x}&=\sum_{n=0}^{\infty}(-1)^{n}x^{n}\\&=1-x+x^{2}+\cdots+(-1)^{n}x^{n}+\cdots,x\in(-1,1)\\ \end{align} \]
\[\begin{align} \sin x&=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n+1)!}x^{2n+1}\\&=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+\frac{(-1)^{n}}{(2n+1)!}x^{2n+1}+\cdots\\ \end{align} \]
\[\begin{align} \cos x&=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n)!}x^{2n}\\&=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+\frac{(-1)^{n}}{(2n)!}x^{2n}+\cdots\\ \end{align} \]
\[\begin{align} \tan x&=\sum_{n=1}^{\infty}\frac{B_{2n}4^{n}(4^{n}-1)}{(2n)!}x^{2n-1}\\&=x+\frac{1}{3}x^{3}+\frac{2}{15}x^{5}+\cdots,x\in(-1,1)\\ \end{align} \]
\[\begin{align} \cot x&=\sum_{n=0}^{\infty}\frac{(-1)^{n}2^{2n}B_{2n}}{(2n)!}x^{2n-1}\\&=\frac{1}{x}-\frac{1}{3}x-\frac{1}{45}x^{3}-\cdots,x\in(0,\pi)\\ \end{align} \]
\[\begin{align} \sec x&=\sum_{\pi=0}^{\infty}\frac{(-1)^{n}E_{2n}x^{2n}}{(2n)!}\\&=1+\frac{1}{2}x^{2}+\frac{5}{24}x^{4}+\cdots,x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\\ \end{align} \]
\[\begin{align} \csc x&=\sum_{n=0}^{\infty}\frac{(-1)^{n+1}2\left(2^{2\mathrm{n}-1}-1\right)B_{2n}}{(2n)!}x^{2x-1}\\&=\frac{1}{x}+\frac{1}{6}x+\frac{7}{360}x^{3}+\cdots,x\in(0,\pi)\\ \end{align} \]

选择题和填空题里的不等式,有些题考到对函数的估算,一般的放缩未必可以解决(本质上是泰勒展开的前几项),构造函数求导,计算量也较大,作为选择题和填空题,花费的时间太多,用泰勒展开是最实际的,

一些例题

[2022 \(\cdot\) 新高考 Ⅰ 卷 7] 设 \(a=0.1e^{0.1},b=\frac{1}{9},c=-\ln0.9\),则:\(A.a<b<c\\B.c<b<a\\C.c<a<b\\D.a<c<b\)

解:由泰勒展开可得

\[a=0.1e^{0.1}>0.1(1+0.1+0.005)=0.1105\\ a=0.1e^{0.1}<0.1(1+0.1+0.01)=0.111\\ c=-\ln0.9=\ln(1+\frac{1}{9})<\frac{1}{9}-\frac{(\frac{1}{9})^2}{2}+\frac{(\frac{1}{9})^3}{6}<0.1052\\ \]

很显然 \(c<a<b\)\(\therefore\) 选 C.

[2022 全国高考甲卷 12] 已知 \(a=\displaystyle\frac{31}{32},b=\cos\displaystyle\frac{1}{4},c=4\sin\displaystyle\frac{1}{4}\),则:\(A.c>b>a\\B.b>a>c\\C.a>b>c\\D.a>c>b\)

解:由泰勒展开可得

\[c=4\sin\frac{1}{4}>4(\frac{1}{4}-\frac{(\displaystyle\frac{1}{4})^3}{6})=1-\frac{1}{96}=\frac{95}{96}\\ b=\cos\frac{1}{4}>1-\frac{(\displaystyle\frac{1}{4})^2}{2}=\frac{31}{32}\\ b=\cos\frac{1}{4}<1-\frac{(\displaystyle\frac{1}{4})^2}{2}+\frac{(\displaystyle\frac{1}{4})^4}{24}<\frac{94}{96}\\ \]

很显然 \(c>b>a\)\(\therefore\) 选 A.

<think>好,我现在需要处理用户关于考研数学泰勒展开的公式及应用的问题。首先,用户可能希望了解泰勒展开的基本公式,以及它在考研中的常见应用场景。根据我的知识,泰勒展开的核心是将函数近似为多项式,但需要确认具体的展开式和余项形式。可能涉及麦克劳林展开作为特例。 接下来,应用方面,用户可能想知道如何利用泰勒展开解决极限、求导、积分或证明不等式等问题。比如在求极限时,用泰勒展开替换复杂函数,简化计算。此外,泰勒公式在近似计算和误差估计中的应用也是考点之一。 需要检查是否有遗漏的关键点,比如不同余项(佩亚诺余项和拉格朗日余项)的区别,以及展开阶数的选择对精度的影响。还有常见的展开式,如e^x、sinx、cosx、ln(1+x)等,这些在考研题目中经常出现。 然后,我需要确保回答结构符合用户的要求:分方法或步骤,换行分隔,不使用第一人称和步骤词汇。同时,要整合搜索到的信息,确保准确性和实用性。注意公式和代码的格式规范,特别是行内公式用$包裹,独立公式用$$。 最后,生成相关问题时要基于用户的原问题,可能涉及泰勒展开的具体例题、不同余项的比较,或者与其他展开方法的对比。确保问题相关且有助于进一步学习。 现在需要验证这些思考是否正确,可能需要补充一些例子或注意事项,比如展开点选择、常见错误等,确保回答全面。同时,检查是否每个部分都清晰,符合用户的格式要求,特别是问题部分必须严格按格式列出三个问题,使用正确的标题。</think>泰勒展开是考研数学的核心考点之一,主要用于函数近似、极限计算和微分方程求解。以下是关键公式及应用场景的整理: --- **一、基本公式形式** 函数$f(x)$在$x_0$处的泰勒展开式为: $$f(x) = \sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x)$$ 其中$R_n(x)$为余项: - **佩亚诺余项**:$R_n(x) = o((x-x_0)^n)$(常用于极限计算) - **拉格朗日余项**:$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$($\xi$介于$x$和$x_0$之间,用于误差估计) **常见展开式(麦克劳林展开,即$x_0=0$的特例):** - $e^x = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + o(x^n)$ - $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots + (-1)^k\frac{x^{2k+1}}{(2k+1)!} + o(x^{2k+2})$ - $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + (-1)^{n-1}\frac{x^n}{n} + o(x^n)$ --- **二、典型应用场景** **1. 极限计算** 通过泰勒展开替换复杂函数,例如: $$\lim_{x \to 0} \frac{\cos x - e^{-x^2/2}}{x^4}$$ 将$\cos x$展开至$x^4$项,$e^{-x^2/2}$展开至$x^4$项后化简。 **2. 高阶导数求解** 利用泰勒展开系数与导数的关系,例如: 已知$f(x) = \sum_{n=0}^\infty a_n x^n$,则$f^{(k)}(0) = k! \cdot a_k$。 **3. 不等式证明** 通过余项估计证明函数关系,例如: 证明当$x>0$时,$\sin x > x - \frac{x^3}{6}$,可通过$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120}\cos\theta x$($0<\theta<1$)推导。 --- **三、注意事项** - 展开阶数需根据题目要求选择,例如分母为$x^3$时分子至少展开到$x^3$ - 加减法运算中不同函数的展开阶数需保持一致 - 幂级数展开的收敛域需单独验证 ```python # 示例:计算sin(x)的泰勒展开前5项 import sympy as sp x = sp.symbols('x') taylor_sin = sp.series(sp.sin(x), x, 0, 5).removeO() print(taylor_sin) # 输出:x - x**3/6 + x**5/120 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值