阿氏圆

阿氏圆

定义

阿氏圆是阿波罗尼斯圆的简称,已知平面上两点 \(A\)\(B\),则所有满足 \(PA/PB=k\)\(k\ne 1\) 的点 \(P\) 的轨迹是一个以定比 \(m:n\) 内分和外分定线段 \(AB\) 的两个分点的连线为直径的圆。

这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称作阿氏圆。

证明

假定在线段 \(AB\) 上有一点 \(C\),且 \(\displaystyle\frac{AC}{BC}=\displaystyle\frac{1}{\lambda}\),在线段 \(AB\) 反向延长线上有一点 \(D\),且 \(\displaystyle\frac{AD}{BD}=\displaystyle\frac{1}{\lambda}\)

不妨设 \(AC=x\)\(BC=\lambda x\),显然有 \(AD=\displaystyle\frac{1+\lambda}{\lambda-1}x\)

\(CD\) 中点为 \(O\),以 \(O\) 为圆心,\(CD\) 为直径作 \(\odot O\),其中半径为 \(r\)

不难发现 \(r=\displaystyle\frac{\lambda}{\lambda-1}x\)\(AO=\displaystyle\frac{1}{\lambda-1}x\)\(OB=\displaystyle\frac{\lambda^2}{\lambda-1}x\)

在圆上任取一点 \(E\),连接 \(OE\)\(AE\)\(BE\)

不难发现 \(\displaystyle\frac{AO}{OE}=\displaystyle\frac{\displaystyle\frac{1}{\lambda-1}x}{\displaystyle\frac{\lambda}{\lambda-1}x}=\displaystyle\frac{1}{\lambda}\)\(\displaystyle\frac{OE}{OB}=\displaystyle\frac{\displaystyle\frac{\lambda}{\lambda-1}x}{\displaystyle\frac{\lambda^2}{\lambda-1}x}=\displaystyle\frac{1}{\lambda}\)\(\therefore\displaystyle\frac{AO}{OE}=\displaystyle\frac{OE}{OB}\)

\(\angle AOE=\angle EOB\)\(\therefore\triangle OAE\sim\triangle OEB\)\(\therefore\displaystyle\frac{AE}{BE}=\displaystyle\frac{1}{\lambda}\)

证毕。

应用

\(B\) 为坐标原点,\(A\) 的坐标为 \((a,0)\),则动点 \(P(x,y)\) 满足 \(\displaystyle\frac{|PA|}{|PB|}=k(k>0,k\ne 1)\)

\(|PA|=\sqrt{(x-a)^2+y^2}\)\(|PB|=\sqrt{x^2+y^2}\)

整理得 \((k^2-1)x^2+(k^2-1)y^2+2ax-a^2=0\)

\(\bigg(x+\displaystyle\frac{a}{k^2-1}\bigg)^2+y^2=\bigg(\displaystyle\frac{ak}{k^2-1}\bigg)^2\)

\(k>0\)\(k\ne 1\) 时,动点 \(P\) 的轨迹是圆。

\(k=1\) 时,动点 \(P\) 的轨迹是 \(AB\) 两点连线的中垂线。

例题

在平面直角坐标系 \(xOy\) 中,已知点 \(A(3,0)\),动点 \(P(x,y)\) 满足 \(\displaystyle\frac{|PA|}{|PO|}=2\),则动点 \(P\) 的轨迹与圆 \((x-1)^2+(y-1)^2=1\) 的位置关系是 ___。

解:

\(\because\displaystyle\frac{|PA|}{|PO|}=2\)\(\therefore |PA|=2|PO|\)\(\therefore\sqrt{(x-3)^2+y^2}=2\sqrt{x^2=y^2}\)

整理得 \((x+1)^2+y^2=4\),表示圆心为 \((-1,0)\),半径 \(R=2\) 的圆。

\((x-1)^2+(y-1)^2=1\) 的圆心为 \((1,1)\),半径 \(r=1\)

两圆圆心距 \(\sqrt{(-1-1)^2+(0-1)^2}=\sqrt{5}\)

显然有 \(2-1<\sqrt{5}<2+1\),所以两个圆相交。

内容概要:本文档《gee scripts.txt》记录了利用Google Earth Engine(GEE)进行遥感影像处理与分类的脚本流程。首先,对指定区域内的Landsat 5卫星图像进行了数据筛选,排除云量超过7%的影像,并应用缩放因子调整光学波段和热波段的数值。接着,基于样本数据集训练随机森林分类器,用于区分植被、水体、建筑、土壤、拜耳作物、岩石和草地等地物类型。最后,将训练好的模型应用于处理后的Landsat 5影像,生成分类结果图层,并计算混淆矩阵以评估模型准确性,同时将分类结果导出至Google Drive。 适合人群:从事地理信息系统(GIS)、遥感科学或环境监测领域的研究人员和技术人员,特别是那些希望深入了解GEE平台及其在地物分类中的应用的人士。 使用场景及目标:①从Landsat卫星获取特定时间段内的高质量影像数据;②通过预处理步骤提高影像质量,确保后续分析的有效性;③构建并训练机器学习模型以实现地物自动分类;④评估分类模型性能,保证结果可靠性;⑤将最终成果高效存储于云端平台以便进一步研究或共享。 阅读建议:由于涉及较多专业术语和技术细节,在阅读时建议先熟悉GEE平台的基本操作以及相关遥感知识,重点关注数据处理流程和分类算法的选择依据。此外,对于代码部分,可以尝试在自己的GEE环境中运行,以便更好地理解每个步骤的具体作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值