数列选讲
通项公式的求法
观察归纳法
俗称瞪眼大法。
已知数列前若干项,求该数列的一个通项公式时,常用观察归纳法。观察数列的特征,横向看各项之间的关系结构,纵向看各项与项数 \(n\) 的内在联系,寻找规律,从而根据规律写出此数列的一个通项公式。
公式法
当数列符合等差数列或等比数列的定义,求通项公式时,只需求出 \(a_1\) 与 \(d\) 或 \(a_1\) 与 \(q\),再代入公式 \(a_n=a_1+(n-1)d\) 或 \(a_n=a_1\cdot q^{n-1}\) 中即可。
由 \(S_n\) 求 \(a_n\)
利用 \(a_n=\begin{cases}S_1, & n=1 \\ S_n-S_{n-1}, & n\geqslant 2\end{cases}\) 可以求得通项公式 \(a_n\),注意对 \(n=1\) 与 \(n\geqslant 2,n\in\N^*\) 两种情况进行分类讨论。
累加法
若数列 \(\left\{a_n\right\}\) 的递推公式形如 \(a_{n+1}=a_n+f(n)(n\in\N^*)\) 且数列 \(\left\{f(n)\right\}\) 可求和,通常用累加法求通项公式,其方法如下:
由递推关系可知 \(a_{n+1}=a_n+f(n)\),即 \(a_2-a_1=f(1)\),\(a_3-a_2=f(2)\),\(a_4-a_3=f(3)\),\(\cdots\),\(a_n-a_{n-1}=f(n-1)\)。
上式左右两边相加可得
即
这种方法又被称为逐差法。
累乘法
若数列 \(\left\{a_n\right\}\) 的递推公式形如 \(a_{n+1}=a_nf(n)(n\in\N^*)\) 且数列 \(\left\{f(n)\right\}\) 可求积,通常用累乘法求通项公式,其方法如下:
由递推关系可知 \(\displaystyle\frac{a_n}{a_{n-1}}=f(n-1)\),即 \(\displaystyle\frac{a_2}{a_1}=f(1)\),\(\displaystyle\frac{a_3}{a_2}=f(2)\),\(\displaystyle\frac{a_4}{a_3}=f(3)\),\(\cdots\),\(\displaystyle\frac{a_n}{a_{n-1}}=f(n-1)\)。
上式左右两边相乘可得
即
这种方法又被称为逐商法。
数列求和的方法
求和公式法
就是直接套公式,没啥好讲的。
这里给出一些也许能用上的公式:
正整数前 \(n\) 项和的公式:
正整数的平方构成的数列 \(\left\{n^2\right\}\) 的前 \(n\) 项和公式:
正整数的立方构成的数列 \(\left\{n^3\right\}\) 的前 \(n\) 项和公式:
倒序相加法
在一个数列 \(\left\{a_n\right\}\) 中,若与首末两项等距离的两项之和等于首末两项之和,则可用倒序相加法求和。
错位相减法
错位相减法可以用于求解下面的求和问题:已知数列 \(\left\{a_n\right\}\) 和 \(\left\{b_n\right\}\) 分别是等差数列和等比数列,求数列 \(\left\{a_n\cdot b_n\right\}\) 的前 \(n\) 项和。
解:设数列 \(\left\{a_n\cdot b_n\right\}\) 的前 \(n\) 项和为 \(S_n\),等差数列 \(\left\{a_n\right\}\) 的首项是 \(a_1\),公差是 \(d\),等比数列 \(\left\{b_n\right\}\) 的首项是 \(b_1\),公比是 \(q\),则:
由等差数列定义可知 \(a_2-a_1=a_3-a_2=\cdots=a_n-a_{n-1}=d\)。
\(\therefore\) 当 \(q=1\) 时,有
当 \(q\ne 1\) 时,有
裂项相消法
裂项相消法的基本思想:设法将数列的每一项拆成两项或若干项,并使它们在相加时除了首尾各有一项或少数几项外,其余各项都能前后正负相消,进而求出数列的前 \(n\) 项和。使用此方法时必须弄清消去了哪些项,保留了哪些项,一般未被消去的项有前后对称的特点。
常见的裂项公式:
分组求和法
如果一个数列的通项公式可写成 \(c_n=a_n\pm b_n\) 的形式,而数列 \(\left\{a_n\right\}\)、\(\left\{b_n\right\}\) 是等差数列或等比数列或可转化为能够求和的数列,那么可采用分组求和法。
并项求和法
在数列中有相邻两项或几项的和是同一个常数或有规律可循时,采用并项求和法较简便。