USACO 2024 January Contest, Bronze
Problem 1. Majority Opinion
Farmer John 有一项重要的任务——弄清楚要为他的奶牛们购买什么类型的干草。
Farmer John 的 N 头奶牛(2≤N≤105^2)编号为 11 到 N,每头奶牛喜欢恰好一种类型的干草 hi(1≤hi≤N1)。他希望他的所有奶牛都喜欢同一种干草。
为了实现这一目标,Farmer John 可以主持焦点小组访谈。一次焦点小组访谈为让编号从 i 到 j 的连续范围内的所有奶牛聚集在一起参加一次访谈。如果有一种干草是小组中超过一半的奶牛喜欢的,则此次焦点小组访谈结束后,所有奶牛最终都会喜欢这种干草。如果不存在这种类型的干草,那么奶牛们不会改变她们喜欢的干草类型。例如,在由 16 头奶牛组成的焦点小组访谈中,需要有其中 9 头或更多的奶牛具有相同的干草喜好,才能使其余奶牛改变其喜好以与之一致。
Farmer John 想知道哪些类型的干草有可能变为同时受到所有奶牛的喜爱。他一次只能主持一个焦点小组访谈,但为了使所有奶牛都喜欢同一类型的干草,他可以根据需要任意多次地主持焦点小组访谈。
输入格式(从终端 / 标准输入读入):
输入的第一行包含一个整数 T,为独立的测试用例的数量(1≤T≤10)。
每一个测试用例的第一行包含 N。
第二行包含 N 个整数,为奶牛们喜爱的干草类型 hi。
输入保证所有测试用例的 N 之和不超过 2⋅10^5。
输出格式(输出至终端 / 标准输出):
输出 T 行,对于每个测试用例输出一行。
如果可能使所有奶牛同时喜欢同一种干草,则以升序输出所有可能的此类干草的类型,否则输出 −1。在同一行内输出一列整数时,相邻的数用空格分隔,并确保行末没有多余空格。
输入样例:
5 5 1 2 2 2 3 6 1 2 3 1 2 3 6 1 1 1 2 2 2 3 3 2 3 2 2 1输出样例:
2 -1 1 2 3 -1在输入样例中,有 5 个测试用例。
在第一个测试用例中,仅可能使所有奶牛喜欢种类 2。FJ 可以通过主持一次所有奶牛的焦点小组访谈达到这一目的。
在第二个测试用例中,可以证明没有奶牛会改变她们喜爱的干草种类。
在第三个测试用例中,有可能使所有奶牛喜欢种类 1,可以通过主持三次焦点小组访谈达到这一目的——首先使奶牛 1 到 4 进行一次焦点小组访谈,随后使奶牛 1 到 5 进行一次焦点小组访谈,随后使奶牛 1 到 6 进行一次焦点小组访谈。以类似的逻辑,依次操作奶牛 3 到 6,随后是奶牛 2 到 6,随后是奶牛 1 到 6,我们可以使所有奶牛喜欢种类 2。
在第四个测试用例中,有可能使所有奶牛喜欢种类 3,可以通过主持一次所有奶牛的焦点小组访谈达到这一目的。
在第五个测试用例中,可以证明没有奶牛会改变她们喜爱的干草种类。
测试点性质:
- 测试点 2:N=2。
- 测试点 3-4:N≤50。
- 测试点 5-6:对于所有的 1≤ i ≤N−1,有 hi≤h_(i+1)。
- 测试点 7-15:没有额外限制。
USACO
=====Analysis=====
分三种情况
1. n = 1 的时候: 直接返回 干草类型
2. n = 2 的时候:两个相同直接返回,不相同返回-1
3. n >= 3 的时候:
3 个干草类型为一组,同化后依次延伸,最后同化所有
=====Code=====
#202401B1
T = int(input())
def solve():
n = int(input())
cows = [int(x) for x in input().split()]
results = []
if n == 1:
results.append(cows[0])
elif n == 2:
if cows[0] != cows[1]:
results.append(-1)
else:
results.append(cows[0])
else:
for i in range(len(cows)-2):
if cows[i] == cows[i+1] or cows[i] == cows[i+2]:
results.append(cows[i])
elif cows[i+1] == cows[i+2]:
results.append(cows[i+1])
if not results:
results.append(-1)
return results
for i in range(T):
result = list(set(solve()))
result.sort()
print(" ".join(str(x) for x in result))