进入到数学学习部分,由于我比较智障所以需要记些东西,以后忘了就不好玩了。
线性筛
原理
每个合数必有一个最大因子(不包括它本身) ,用这个因子把合数筛掉。这样能保证每个数只被筛一次。
如何找最大的?
假设这个数为x,最大因子为M,且x=k*M,那么k一定是个质数,因为k如果不是质数,那么可以从k中拿出一个质因子乘到M上,此时的M显然不是最大的。
k的具体范围?
设M的最小质因子为p1,如果k>p1,那么可以将k和p1交换一下,让k成为M的质因子,而p1作为要乘的那个质数,此时的M显然更大,所以k的范围是k<=p1
所以就能知道怎么做了。枚举M,枚举k,标记一下就行了,注意当k达到p1时break
代码
随手写的,,简单跟别人写的对照了一下,也不知道挂了没有。
int not_prime[maxn],prime[maxn],pcnt;
inline void init_prime()
{
pcnt=0;
for(int i=2;i<=maxnum;++i)
{
if(!not_prime[i]) prime[++pcnt]=i;
for(int j=1;j<=pcnt&&prime[j]*i<=maxnum;++j)
{
not_prime[prime[j]*i]=1;
if(i%prime[j]==0) break;
}
}
}
求欧拉函数值
原理
欧拉函数有4条规律(以下p为素数,相关证明均不是非常严谨,因为主要目的不是证明)
1.
phi(p)=p−1
这条很显然
2.
phi(pk)=pk−pk−1=(p−1)∗pk−1
令 n=pk ,小于 n 的正整数共有 pk−1 个,其中与 p 不互素的个数共 pk−1−1 个,它们是 1∗p , 2∗p , 3∗p … (pk−1−1)∗p
所以 phi(pk)=(pk−1)−(pk−1−1)==pk−pk−1==(p−1)∗pk−1
3.
i%p==0时有phi(i∗p)==p∗phi(i)
当
n
与
[i+1,i∗2] 中与i不互质的个数有 i−phi(i) 个
…
所以 [1,i∗p] 中与i不互质的个数有 p∗(i−phi(i))个
又因为与i不互质本质上与i*p不互质是相同的
所以 p∗(i−phi(i))=p∗i−phi(i∗p)
所以 phi(i∗p)=p∗phi(i)
4.
i%p!=0时有phi(i∗p)==phi(i)∗(p−1)
i%p 不为0且p为质数, 所以i与p互质, 那么根据积性函数的性质 phi(i∗p)=phi(i)∗phi(p) 其中 phi(p)=p−1
所以 phi(i∗p)=phi(i)∗(p−1).
利用1,3,4三条规律就能通过枚举那个小质数k来计算出M*k的欧拉函数值
代码
int phi[maxn],prime[maxn],pcnt;
inline void phi_table()
{
for(int i=1;i<=100000;++i) phi[i]=0;
phi[1]=1;
for(int i=2;i<=100000;++i)
{
if(!phi[i]) prime[++pcnt]=i,phi[i]=i-1;//规律1
for(int j=1;j<=pcnt&&prime[j]*i<=100000;++j)
if(i%prime[j]==0){
phi[i*prime[j]]=prime[j]*phi[i];//规律3
break;
}
else phi[i*prime[j]]=(prime[j]-1)*phi[i];//规律4
}
}