线性筛学习笔记

9 篇文章 0 订阅
2 篇文章 0 订阅

进入到数学学习部分,由于我比较智障所以需要记些东西,以后忘了就不好玩了。


线性筛

原理

每个合数必有一个最大因子(不包括它本身) ,用这个因子把合数筛掉。这样能保证每个数只被筛一次。


如何找最大的?

假设这个数为x,最大因子为M,且x=k*M,那么k一定是个质数,因为k如果不是质数,那么可以从k中拿出一个质因子乘到M上,此时的M显然不是最大的。

k的具体范围?

设M的最小质因子为p1,如果k>p1,那么可以将k和p1交换一下,让k成为M的质因子,而p1作为要乘的那个质数,此时的M显然更大,所以k的范围是k<=p1

所以就能知道怎么做了。枚举M,枚举k,标记一下就行了,注意当k达到p1时break

代码

随手写的,,简单跟别人写的对照了一下,也不知道挂了没有。

int not_prime[maxn],prime[maxn],pcnt;

inline void init_prime()
{
    pcnt=0;
    for(int i=2;i<=maxnum;++i)
    {
        if(!not_prime[i]) prime[++pcnt]=i;
        for(int j=1;j<=pcnt&&prime[j]*i<=maxnum;++j)
        {
            not_prime[prime[j]*i]=1;
            if(i%prime[j]==0) break;
        }
    }
}

求欧拉函数值

原理

欧拉函数有4条规律(以下p为素数,相关证明均不是非常严谨,因为主要目的不是证明)

1.

phi(p)=p1

这条很显然

2.

phi(pk)=pkpk1=(p1)pk1

n=pk ,小于 n 的正整数共有 pk1 个,其中与 p 不互素的个数共 pk11 个,它们是 1p , 2p , 3p (pk11)p

所以 phi(pk)=(pk1)(pk11)==pkpk1==(p1)pk1

3.

i%p==0phi(ip)==pphi(i)

n i不互质时, n+i i 也不互质,则

[1,i]中与i不互质的个数有 iphi(i)

[i+1,i2] 中与i不互质的个数有 iphi(i)

所以 [1,ip] 中与i不互质的个数有 p(iphi(i))

又因为与i不互质本质上与i*p不互质是相同的

所以 p(iphi(i))=piphi(ip)

所以 phi(ip)=pphi(i)

4.

i%p!=0phi(ip)==phi(i)(p1)

i%p 不为0且p为质数, 所以i与p互质, 那么根据积性函数的性质 phi(ip)=phi(i)phi(p) 其中 phi(p)=p1

所以 phi(ip)=phi(i)(p1).

利用1,3,4三条规律就能通过枚举那个小质数k来计算出M*k的欧拉函数值

代码

int phi[maxn],prime[maxn],pcnt;

inline void phi_table()
{
    for(int i=1;i<=100000;++i) phi[i]=0;
    phi[1]=1;
    for(int i=2;i<=100000;++i) 
    {
        if(!phi[i]) prime[++pcnt]=i,phi[i]=i-1;//规律1

        for(int j=1;j<=pcnt&&prime[j]*i<=100000;++j)
            if(i%prime[j]==0){
                phi[i*prime[j]]=prime[j]*phi[i];//规律3
                break;
            }
            else phi[i*prime[j]]=(prime[j]-1)*phi[i];//规律4
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值