单调栈求 区间长度和区间最大值

求由1组成的第二大面积

    00111000  
    00111010
    00010010
    00000000
    
    00111000
    00222010
    00030020
    00000000
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int sum[2050][2050];
int a[2050][2050];
int n,m;
///单调栈基本应用:
///可以在O(n)下求出一个序列中
///每个元素 向右 或 向左 比它 小 或 大 的第一个元素
struct node
{
    ll pos,val;
} s[100500];
bool cmp(ll a,ll b)
{
    return a>b;

}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1; i<=n; i++)
        for(int j=1; j<=m; j++)
            scanf("%1d",&a[i][j]);
    for(int i=1; i<=n; i++)
    {
        for(int j=1; j<=m; j++)
        {
            if(a[i][j])
                sum[i][j]=sum[i-1][j]+a[i][j];
            else sum[i][j]=0;
        }
    }
    ll ans=0;
    ll max1=0,max2=0;
    for(int i=1; i<=n; i++)
    {
        ll top=0;
        for(int j=1; j<=m+1; j++) ///当j=m+1时,清空栈
        {
            if(top==0)
            {
                s[++top]= {j,sum[i][j]};
            }
            else
            {
                while(s[top].val>sum[i][j])
                {
                    ll temp[10]= {0};
                    temp[1]=(ll)(j-s[top-1].pos-1)*(ll)s[top].val;
                    temp[2]=(ll)(j-s[top-1].pos-2)*(ll)s[top].val;
                    temp[3]=(ll)(j-s[top-1].pos-1)*(ll)(s[top].val-1);
                    temp[4]=max1;
                    temp[5]=max2;
                    sort(temp+1,temp+1+5,cmp);
                    max1=temp[1];
                    max2=temp[2];
                    top--;
                }
                s[++top]= {j,sum[i][j]};
            }
        }
    }
    printf("%lld\n",max2);
    return 0;
}

计算所有子区间最大值乘以最小值的和,通常使用单调栈(Monotonic Stack)的数据结构来解决这个问题。单调栈的主要原理是利用栈的单调性,即如果栈内的元素是非递减的,那么栈顶元素一定是这段区间最大值;如果栈内元素非递增,那么栈顶元素就是最小值。 以下是一个简单的C++实现思路: 1. 初始化两个变量:`maxSum`表示当前子区间最大值与最小值的乘积,初始为0;`stack`用于存储每个子区间的最小子区间。 2. 遍历数组,用两个指针`left`和`right`分别从左到右移动: a. 如果`right`到达数组末尾,说明已经形成一个子区间,此时计算`maxValue * minValue`并加到`maxSum`上。若`stack`为空或当前元素大于等于栈顶元素,则将其压入栈中;否则,将栈中的元素弹出直到栈顶元素小于当前元素,然后将当前元素和剩余栈顶元素一起压入栈中。 b. 如果`left`比`right`慢,说明找到了一个新的可能的最大值,更新`maxValue`为当前元素,但不需要做其他操作。 3. 当遍历完成后,`maxSum`就是所的结果。 下面是示例代码: ```cpp #include <vector> #include <stack> int maxProduct(std::vector<int>& nums) { int n = nums.size(); if (n <= 1) return 0; int left = 0, right = 0; int maxValue = nums[0], minValue = nums[0]; std::stack<int> stack; stack.push(minValue); int maxSum = 0; while (right < n - 1) { // 更新区间 if (nums[right + 1] >= minValue) { minValue = nums[right + 1]; stack.push(minValue); } else { while (!stack.empty() && nums[right + 1] < stack.top()) { maxValue = std::max(maxValue, stack.top()); minValue = std::min(minValue, stack.top()); stack.pop(); } minValue = nums[right + 1]; stack.push(minValue); } // 计算结果 maxSum += maxValue * minValue; // 移动左右指针 right++; if (right < n) { maxValue = std::max(maxValue, nums[right]); } } return maxSum; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值