求由1组成的第二大面积
00111000
00111010
00010010
00000000
00111000
00222010
00030020
00000000
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int sum[2050][2050];
int a[2050][2050];
int n,m;
///单调栈基本应用:
///可以在O(n)下求出一个序列中
///每个元素 向右 或 向左 比它 小 或 大 的第一个元素
struct node
{
ll pos,val;
} s[100500];
bool cmp(ll a,ll b)
{
return a>b;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
scanf("%1d",&a[i][j]);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
if(a[i][j])
sum[i][j]=sum[i-1][j]+a[i][j];
else sum[i][j]=0;
}
}
ll ans=0;
ll max1=0,max2=0;
for(int i=1; i<=n; i++)
{
ll top=0;
for(int j=1; j<=m+1; j++) ///当j=m+1时,清空栈
{
if(top==0)
{
s[++top]= {j,sum[i][j]};
}
else
{
while(s[top].val>sum[i][j])
{
ll temp[10]= {0};
temp[1]=(ll)(j-s[top-1].pos-1)*(ll)s[top].val;
temp[2]=(ll)(j-s[top-1].pos-2)*(ll)s[top].val;
temp[3]=(ll)(j-s[top-1].pos-1)*(ll)(s[top].val-1);
temp[4]=max1;
temp[5]=max2;
sort(temp+1,temp+1+5,cmp);
max1=temp[1];
max2=temp[2];
top--;
}
s[++top]= {j,sum[i][j]};
}
}
}
printf("%lld\n",max2);
return 0;
}