Spark coalesce算子

本文详细介绍了Spark中的coalesce算子,通过多个测试案例展示其在缩减和增大分区时的行为。默认情况下,coalesce不会打乱原有分区数据,可能导致数据倾斜。通过设置shuffle参数为true,可以实现数据重新组合,从而达到数据均衡。同时,对比了repartition在扩大分区个数上的优势。
摘要由CSDN通过智能技术生成

缩减分区

Test 1:

package test.wyh.wordcount

import org.apache.spark.{SparkConf, SparkContext}

object TestCoalEsce {
  def main(args: Array[String]): Unit = {

    //建立Spark连接
    val sparkConf = new SparkConf().setMaster("local").setAppName("TestWordCountApp")
    val sc = new SparkContext(sparkConf)
    //原本4个分区
    val rdd = sc.makeRDD(List(1, 2, 3, 4), 4)
    //缩减为两个分区
    val coalesceRDD = rdd.coalesce(2)
    coalesceRDD.saveAsTextFile("output")

    //关闭连接
    sc.stop()

  }

}

运行结果:

原来RDD中的前两个元素被分到了一个分区,后两个元素被分到了一个分区。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QYHuiiQ

听说打赏的人工资翻倍~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值