基于springboot协同过滤算法的科技文献推荐系统

一、系统背景与意义

随着信息技术的飞速发展和科研活动的日益活跃,科技文献的数量呈现爆炸式增长。用户如何从海量文献资源中快速找到符合自己研究需求和兴趣的文献成为了一个亟待解决的问题。传统的文献检索方式往往基于关键词匹配,缺乏个性化和智能化,难以满足用户多样化的需求。因此,开发一个基于Spring Boot协同过滤算法的科技文献推荐系统具有重要意义,它能够根据用户的历史行为和偏好,为用户提供精准、高效的文献推荐服务,从而提高用户的检索效率和满意度。

二、系统架构与技术选型

系统架构:该系统采用前后端分离的架构,前端使用Vue.js等框架构建用户界面,实现响应式数据绑定和组件化开发;后端使用Spring Boot框架搭建服务层,提供RESTful API接口,实现业务逻辑的处理和数据交互。同时,系统还使用MySQL等数据库进行数据存储和管理。
技术选型:
Spring Boot:作为后端开发框架,提供了全面的核心容器、内置Web框架和数据访问支持,简化了应用开发搭建过程,提高了开发效率。
协同过滤算法:作为推荐算法的核心,能够基于用户的历史行为和偏好,挖掘用户潜在的兴趣和需求,为用户提供个性化的文献推荐。
Vue.js:作为前端框架,提供了丰富的UI组件和响应式数据绑定机制,能够快速搭建美观、交互性强的用户界面。

部分代码

package com.example.controller;

import cn.hutool.core.util.StrUtil;
import cn.hutool.crypto.SecureUtil;
import com.example.common.Result;
import com.example.common.ResultCode;
import com.example.entity.Caiwu;
import com.example.exception.CustomException;
import com.example.service.CaiwuService;
import com.example.utils.MapWrapperUtils;
import com.example.utils.jwt.JwtUtil;
import com.example.vo.CaiwuVo;
import org.springframework.beans.BeanUtils;
import org.springframework.web.bind.annotation.*;

import javax.annotation.Resource;
import javax.servlet.http.HttpServletRequest;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

@RestController
@RequestMapping(value = "/caiwu")
public class CaiwuController {

    @Resource
    private CaiwuService caiwuService;

    @PostMapping
    public Result<Caiwu> add(@RequestBody CaiwuVo caiwu) {
        caiwuService.add(caiwu);
           return Result.success(caiwu);
    }
	
	

    @PostMapping("/deleteList")
    public Result<Caiwu> deleteList(@RequestBody CaiwuVo caiwu) {
        caiwuService.deleteList(caiwu.getList());
        return Result.success();
    }

    @DeleteMapping("/{id}")
    public Result delete(@PathVariable Long id) {
        caiwuService.delete(id);
        return Result.success();
    }

    @PutMapping
    public Result update(@RequestBody CaiwuVo caiwu) {
        caiwuService.update(caiwu);
        return Result.success();
    }

    @GetMapping("/{id}")
    public Result<Caiwu> detail(@PathVariable Integer id) {
        Caiwu caiwu = caiwuService.findById(id);
        return Result.success(caiwu);
    }

    @GetMapping
    public Result<List<Caiwu>> all() {
        return Result.success(caiwuService.list());
    }

    @PostMapping("/page")
    public Result<CaiwuVo> page(@RequestBody CaiwuVo caiwuVo) {
        return Result.success(caiwuService.findPage(caiwuVo));
    }
	    @PostMapping("/login")
    public Result login(@RequestBody Caiwu caiwu, HttpServletRequest request) {
        if (StrUtil.isBlank(caiwu.getZhanghao()) || StrUtil.isBlank(caiwu.getMima())) {
            throw new CustomException(ResultCode.PARAM_LOST_ERROR);
        }
        Caiwu login = caiwuService.login(caiwu);
//        if(!login.getStatus()){
//            return Result.error("1001","状态限制,无法登录系统");
//        }
        if(login != null) {
            HashMap hashMap = new HashMap();
            hashMap.put("user", login);
            Map<String, Object> map = MapWrapperUtils.builder(MapWrapperUtils.KEY_USER_ID,caiwu.getId());
            String token = JwtUtil.creatToken(map);
            hashMap.put("token", token);
            return Result.success(hashMap);
        }else {
            return Result.error();
        }
    }
    @PutMapping("/updatePassword")
    public Result updatePassword(@RequestBody Caiwu info, HttpServletRequest request) {
        Caiwu caiwu = caiwuService.findById(info.getId());
        String oldPassword = SecureUtil.md5(info.getMima());
        if (!oldPassword.equals(caiwu.getMima())) {
            return Result.error(ResultCode.PARAM_PASSWORD_ERROR.code, ResultCode.PARAM_PASSWORD_ERROR.msg);
        }
        info.setMima(SecureUtil.md5(info.getNewPassword()));
        Caiwu caiwu1 = new Caiwu();
        BeanUtils.copyProperties(info, caiwu1);
        caiwuService.update(caiwu1);
        return Result.success();
    }
}

效果图

请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

三、系统功能与实现

用户画像构建:系统收集并分析用户的基本信息、历史阅读记录、行为日志等数据,运用数据挖掘技术构建用户画像,全面刻画用户的阅读兴趣与偏好。
文献分类与信息管理:系统建立详细的文献分类体系,收集并整理文献的基本信息(如标题、作者、摘要、关键词等),为推荐算法提供丰富的数据源。
协同过滤推荐算法实现:系统实现基于用户的协同过滤算法和基于文献的协同过滤算法,通过计算用户相似性或文献相似性,生成个性化的文献推荐列表。
系统测试与优化:系统通过用户测试、性能评估等手段,收集系统使用反馈,分析推荐效果,不断优化推荐算法与系统功能,提升用户体验。

四、系统优势与应用前景

个性化推荐:系统能够根据用户的历史行为和偏好,为用户提供个性化的文献推荐服务,提高用户的检索效率和满意度。
智能化程度高:系统运用协同过滤算法和数据挖掘技术,能够深入挖掘用户的潜在兴趣和需求,实现精准推荐。
可扩展性强:系统采用前后端分离的架构和Spring Boot框架,具有良好的可扩展性和可维护性,能够适应未来业务的发展和变化。
应用前景广阔:该系统可以广泛应用于图书馆、科研机构、学术社区等领域,为用户提供个性化的文献推荐服务,促进知识的传播和共享。
综上所述,基于Spring Boot协同过滤算法的科技文献推荐系统是一种具有广阔应用前景和重要意义的智能推荐系统。它能够根据用户的历史行为和偏好,为用户提供精准、高效的文献推荐服务,从而提高用户的检索效率和满意度,促进知识的传播和共享。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值