8B模型奥数成绩比肩GPT-4!上海AI Lab出品

克雷西 发自 凹非寺
量子位 | 公众号 QbitAI

只要1/200的参数,就能让大模型拥有和GPT-4一样的数学能力?

来自复旦和上海AI实验室的研究团队,刚刚研发出了具有超强数学能力的模型。

它以Llama 3为基础,参数量只有8B,却在奥赛级别的题目上取得了比肩GPT-4的准确率。

3e8dd77597a6ca707c75093c285c91a2.png

这款模型名为MCTSr,是将AlphaGo中用到的蒙特卡洛算法与Llama3结合而成。

它能用少量的数据实现和GPT-4等的相同效果,让网友感叹Q*成真了,小模型在数学上也能做的和GPT-4等著名模型一样好。

c4f02fc56d0e76db2517ab3247783190.png

就此又有网友表示,MCTSr能用极少的参数实现相同的效果,加上有时候训练收益随规模递减,表明架构才是当前AI的瓶颈,而不是运算。

17321bab8f4fca5a266abba430abe58d.png

这样的趋势也让人想起了AI算力霸主英伟达,开始思考规模化是不是不那么重要了,会不会利空老黄呢?

cc0bf8ad95f95814f76f2d7aa87f7dc3.png

所以,MCTSr具体运用了什么样的方法呢?

将蒙特卡洛引入大模型

MCTSr名字里是MCT,指的就是蒙特卡洛树(Monte Carlo Tree),而Sr则指的是自我完善(Self-Refine)。

蒙特卡洛树又称随机抽样或统计试验方法,是指一种使用重复随机采样生成合成模拟数据的近似方法,谷歌的围棋机器人AlphaGo当中也用到了这种方法。

名字中没有体现的,是蒙特卡洛与大模型的结合,本项目当中使用的是Llama 3-8B,同时MCTSr还引入了自我修正和自我评估的迭代过程。

ba0f2fb89ac6374c5ad2961b112e35ac.png

在解答数学问题时,MCTSr中的大模型首先会像正常流程一样生成初步答案(甚至可以是“我不知道”),但并不会直接作为输出。

为了改进这个初始答案,MCTSr算法会对其进行评估和反馈,语言模型会被要求对答案进行评价和批评,分析其中可能存在的问题。

然后大模型基于反馈进行自我修正,产生一个新的答案,这个新版本会纳入搜索树中,成为一个新的子节点。

针对多个子节点,系统会进行评分和奖励采样,计算出该节点的“Q值”(a表示答案节点,Ra表示a的奖励样本集合,|Ra|表示样本数量),可以看出Q值的计算综合考虑了节点在最坏情况和平均情况下的表现。

为了提高评估的可靠性,系统采用了严格的打分标准,并会进行重复采样,同时还采取了禁止模型给出满分等策略。

f77d2a3b9761f9b575b03194e43c0907.png

然后基于Q值,MCTSr会使用改进的UCB公式计算每个叶子节点的UCT值,选择UCT值最高的节点进行扩展。

(UCB是一种实现总奖励最大化的方式,UCT是将UCB策略应用于树形搜索问题的一种算法。)

计算UCT值的目的,是为了平衡了节点的平均奖励和访问频率,避免单纯追求高Q值导致的效率下降。

此外,作者修正的UCT计算公式中还引入了动态调整探索系数c,以便在搜索过程中适应不同的问题复杂度,并在探索广度和深度之间做出平衡。

31d42d5a6a9f2985e5a62c56325f727b.png

被选中的节点,会通过大模型再次进行自我修正,生成新的答案节点,然后再次进行自我评估并计算Q值。

新的Q值会被并反向传播到其父节点和祖先节点,确保了搜索树中节点的质量评估随着搜索的进行而不断改进。

根据新的Q值和访问次数,各个节点的UCT值也会被重新计算。

接着,上述步骤会被不断重复,直到满足预设的终止条件,此时具有最高Q值的答案节点被视为问题的最优解。

总的来说,通过蒙特卡洛搜索、自我完善与大模型的集合,MCTSr实现了数学问题最优解的生成。

那么,这种方法的实际效果究竟如何呢?

成绩不输GPT-4和Claude-3

在测试当中,作者一共使用了四种模型配置——零样本思维链(CoT),以及1/4/8轮自我优化的MCTSr,其中零样本为对照组。

测试数据集包括MATH的5个level,GSM-8K和GSM-Hard,以及一系列奥赛级别的数据集——AIME、Math Odyssey 和OlympiadBench。

先看简单一些的GSM和MATH。

从下表中可以看出,随着自我优化轮数是增多,模型取得的准确率也在增加,经过8轮之后,在GSM-8K上已经达到了96.66%。

而Gemini(1.5Pro,下同)、Claude-3(Opus,下同)、GPT-4(Turbo,下同)的成绩则分别是94.4、95和97.1,可以看出参数只有8B的MCTSr和这些先进模型不相上下。

930eac680478c6efc5efa61fd743d456.png

同样在MATH上,无论是整体还是细分的五个难度等级,成绩随优化轮数的变化都呈现出了相同趋势。

特别是在最困难的Level-5上,8轮后的成绩已经接近了对照组的5倍。

在MATH上,Gemini、Claude-3和GPT-4的成绩分别为67.7、60.1和73.4,相比之下MCTSr略逊一筹,但也和Claude比较接近。

af2676699454e0531ff8a3296f12adf4.png

在更加困难的奥赛级别题目上,自我优化给MCTSr带来的能力增强也十分显著。

在Math Odyssey上,MCTSr甚至超过了Gemini、Claude-3和GPT-4,三者的成绩分别是45、40和49.1。

同时,在OlympiadBench上,经过8轮优化后,MCTSr的成绩是零样本时的6.2倍。

8b222f48f5a2994ae8c8ee06c004ad4c.png

值得一提的是,Math Odyssey数据集在2024年4月才发布,其内容与Llama 3的预训练语料重叠度很低。

而在这个数据集上,MCTSr模型的性能从Zero-Shot CoT的17.22%提升到了8-rollouts MCTSr的49.36%。

这一结果表明,MCTSr在面对全新的问题时,已经显现出了一定的泛化能力

目前,MCTSr的代码已经开源,感兴趣的读者可以到GitHub当中了解。

论文地址:
https://arxiv.org/abs/2406.07394
GitHub:
https://github.com/trotsky1997/MathBlackBox

量子位年度AI主题策划正在征集中!

欢迎投稿专题 一千零一个AI应365行AI落地方案

或与我们分享你在寻找的AI产品,或发现的AI新动向

f27bd2cd30c63c8b59903d38920664a0.png

点这里👇关注我,记得标星哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值