故障馈线检测对于维护配电网络中能源供应的安全性和稳定性至关重要。
为了提高检测精度,本研究提出了一种基于叠加零序电流图像识别的故障馈线检测方法。
利用卷积神经网络(CNN)识别同一图中的叠加电流,而不是原始的单个电流,可以实现电流之间的相关性比较。
此外,不同馈线的零序电流按特定顺序叠加,CNN可以在进行相关性比较的同时适应配电网拓扑的变化。
由于零序电流随时间迅速衰减,因此将注意力学习模块嵌入到 CNN 中以增强判别能力。
ID:62300689295476006
SourseCode
故障馈线检测对于维护配电网络中能源供应的安全性和稳定性至关重要。在电力系统中,故障馈线可能会导致电流异常,进而引发各种故障,如电压下降、线路过载等问题。因此,及时准确地检测故障馈线,成为了电力系统维护的一项重要工作。
为了提高故障馈线检测的精度,本研究提出了一种基于叠加零序电流图像识别的方法。在传统的故障馈线检测方法中,通常会使用单个电流进行判断,局限性较大。而本研究采用了卷积神经网络(CNN)来识别同一图中的叠加电流,通过比较叠加电流之间的相关性,可以提高检测的准确度。
此外,不同馈线的零序电流具有特定的叠加顺序,CNN可以在进行相关性比较的同时适应配电网拓扑的变化。这种基于叠加零序电流图像识别的方法,不仅可以准确检测故障馈线,还能够适应复杂的配电网结构和变化。
然而,由于零序电流随时间迅速衰减,其信号特征容易受到噪声的干扰。为了增强判别能力,本研究在CNN中嵌入了注意力学习模块。通过对零序电流信号的重要部分进行加权学习,可以提高检测的灵敏度和准确度。
综上所述,本研究提出的基于叠加零序电流图像识别的故障馈线检测方法,具有以下优点:一是通过使用卷积神经网络,可以利用叠加电流之间的相关性提高故障馈线检测的精度;二是通过适应配电网拓扑的变化,增加了方法的适应性和稳定性;三是通过嵌入注意力学习模块,提高了方法对零序电流信号的判别能力。
未来,我们将进一步优化和完善该方法,通过大量实际数据的验证,进一步提高故障馈线检测的准确度和可靠性。同时,我们也将探索更多的电力系统故障检测方法,以提升电力系统的稳定性和可靠性,为电力行业的发展做出更大的贡献。
相关的代码,程序地址如下:http://fansik.cn/689295476006.html