第一章动态规划(四)

本节目录

背包模型

集合划分:若最后一步不同,则根据最后一步,否则根据倒数第二步

例题:6. 多重背包问题 III
在这里插入图片描述

import java.util.Scanner;

public class Main {
    static int N = 20010;
    static int n;
    static int m;
    static int[] f = new int[N];
    static int[] g = new int[N];
    static int[] q = new int[N];//单调队列
    
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        m = sc.nextInt();
        for(int i = 0;i < n;i++) {
        	int v = sc.nextInt();
        	int w = sc.nextInt();
        	int s = sc.nextInt();
        	g = f.clone();
        	for(int j = 0;j < v;j++) {
        		int hh = 0, tt = -1;
        		for(int k = j;k <= m;k += v) {
        			if(hh <= tt && q[hh] < k - s * v) hh++;
        			if(hh <= tt) f[k] = Math.max(f[k], g[q[hh]] + (k - q[hh]) / v * w);
        			while(hh <= tt && g[q[tt]] - (q[tt] - j) / v * w <= g[k] - (k - j) / v * w) tt--;
        			q[++tt] = k;
        		}
        	}
        }
        sc.close();
        System.out.println(f[m]);
    }
}

例题:423. 采药
在这里插入图片描述

经典01背包问题。
采药总时间相当于背包容量,每一株药相当于一件物品,采药时间相当于该物品的体积,草药的价值相当于物品价值。
【朴素版】

import java.util.Scanner;

public class Main {
    static int N = 1010;
    static int n, m;
    static int[] v = new int[N];
    static int[] w = new int[N];
    static int[][] dp = new int[N][N];

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        m = sc.nextInt();//体积
        n = sc.nextInt();//物品数量
        for (int i = 1; i <= n; i++) {
            v[i] = sc.nextInt();
            w[i] = sc.nextInt();
        }

        for (int i = 1; i <= n; i++) {
            for (int j = 0; j <= m; j++) {
                dp[i][j] = dp[i - 1][j];
                if (j >= v[i]) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);
                }
            }
        }
        System.out.println(dp[n][m]);
    }
}

【状态压缩版】

import java.util.Scanner;

public class Main {
    static int N = 1010;
    static int n;
    static int m;
    static int[] f = new int[N];
    
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        m = sc.nextInt();
        n = sc.nextInt();
        
        for(int i = 0;i < n;i++) {
        	int v = sc.nextInt();
        	int w = sc.nextInt();
        	for(int j = m;j >= v;j--) {
        		f[j] = Math.max(f[j], f[j - v] + w);
        	}
        }
        sc.close();
        System.out.println(f[m]);
    }
}

例题:装箱问题
这道题写过了

例题:宠物小精灵之收服
原题链接

【题目描述】

宠物小精灵是一部讲述小智和他的搭档皮卡丘一起冒险的故事。

一天,小智和皮卡丘来到了小精灵狩猎场,里面有很多珍贵的野生宠物小精灵。小智也想收服其中的一些小精灵。然而,野生的小精灵并不那么容易被收服。对于每一个野生小精灵而言,小智可能需要使用很多个精灵球才能收服它,而在收服过程中,野生小精灵也会对皮卡丘造成一定的伤害(从而减少皮卡丘的体力)。当皮卡丘的体力小于等于0时,小智就必须结束狩猎(因为他需要给皮卡丘疗伤),而使得皮卡丘体力小于等于0的野生小精灵也不会被小智收服。当小智的精灵球用完时,狩猎也宣告结束。

我们假设小智遇到野生小精灵时有两个选择:收服它,或者离开它。如果小智选择了收服,那么一定会扔出能够收服该小精灵的精灵球,而皮卡丘也一定会受到相应的伤害;如果选择离开它,那么小智不会损失精灵球,皮卡丘也不会损失体力。

小智的目标有两个:主要目标是收服尽可能多的野生小精灵;如果可以收服的小精灵数量一样,小智希望皮卡丘受到的伤害越小(剩余体力越大),因为他们还要继续冒险。

现在已知小智的精灵球数量和皮卡丘的初始体力,已知每一个小精灵需要的用于收服的精灵球数目和它在被收服过程中会对皮卡丘造成的伤害数目。请问,小智该如何选择收服哪些小精灵以达到他的目标呢?
【输入】
输入数据的第一行包含三个整数:N(0<N<1000),M(0<M<500),K(0<K<100),分别代表小智的精灵球数量、皮卡丘初始的体力值、野生小精灵的数量。

之后的K行,每一行代表一个野生小精灵,包括两个整数:收服该小精灵需要的精灵球的数量,以及收服过程中对皮卡丘造成的伤害。
【输出】
输出为一行,包含两个整数:C,R,分别表示最多收服C个小精灵,以及收服C个小精灵时皮卡丘的剩余体力值最多为R。
【输入样例】
10 100 5
7 10
2 40
2 50
1 20
4 20
【输出样例】
3 30
【提示】
样例输入2:
10 100 5
8 110
12 10
20 10
5 200
1 110
样例输出2:
0 100
提示:
对于样例输入1:小智选择:(7,10) (2,40) (1,20) 这样小智一共收服了3个小精灵,皮卡丘受到了70点伤害,剩余100-70=30点体力。所以输出3 30。
对于样例输入2:小智一个小精灵都没法收服,皮卡丘也不会收到任何伤害,所以输出0 100。
————————————————————————————————————————————————————
选或不选------01背包
花费1:精灵球数量
花费2:皮卡丘体力值
价值:小精灵的数量
状态表示 f[i][j][k] 表示所有只从前 i 个物品中选,且花费1不超过 j ,花费2不超过 k 的选法的最大价值。
状态计算:f[i][j][k] = max(f[i-1][j][k],f[i-1][j-v1[i]][k-v2[i]] + 1) 不选、选第 i 个小精灵
最多收服的小精灵的数量 f[K][N][M]
最少耗费体力怎么计算?
也就是求,当 f[K][N][m] = f[K][N][M] 时,m 最小能有多小。

本题必须状态压缩,不然内存会超出题目要求

import java.util.Scanner;

public class Main {
    static int N = 1010;
    static int M = 510; 
    static int n;
    static int V1;
    static int V2;
    static int[][] f = new int[N][M];
    
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        V1 = sc.nextInt();
        V2 = sc.nextInt();
        n = sc.nextInt();
        
        for(int i = 0;i < n;i++) {
        	int v1 = sc.nextInt();
        	int v2 = sc.nextInt();
        	for(int j = V1;j >= v1;j--) {//从大体积开始枚举
        		for(int k = V2 - 1;k >= v2;k--) {//花费2不能等于V2,那样无法收服
        			f[j][k] = Math.max(f[j][k], f[j - v1][k - v2] + 1);
        		}
        	}
        }
        sc.close();

        System.out.print(f[V1][V2 - 1] + " ");
        int k = V2 - 1;
        while(k > 0 && f[V1][k - 1] == f[V1][V2 - 1]) {
        	k--;
        }
        System.out.println(V2 - k);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值