🔥作者主页:疯狂行者🔥 💖✌java领域优质创作者,专注于Java技术领域技术交流✌💖
💖文末获取源码💖
精彩专栏推荐订阅:在 下方专栏👇🏻👇🏻👇🏻👇🏻Java精彩实战项目案例
Java精彩新手项目案例
Python精彩新手项目案例
文章目录
前言
计算机毕业设计|基于Python的民宿可视化分析+随机森林预测算法 民宿爬虫 酒店爬虫 民宿可视化分析(新出)(爬虫美团)
一、系统功能
1.1 开发环境
- 开发语言:Python - 技术:Django
- 数据库:MySQL - 架构:B/S - 源码类型: Web
- 编译工具:Pycharm
- 爬虫技术:selenium
- 算法:随机森林预测、情感分析
二、爬虫及预测
2.1 爬虫概述
在民宿行业,爬虫技术同样重要。特别是在个性化推荐系统中,需依赖大量实时数据提供精准服务。爬虫可以系统地从美团等平台收集民宿信息,如房源详情、用户评价、价格变化和图片等。
以某民宿管理系统为例,使用Scrapy框架的爬虫从美团等平台抓取数据。爬虫自动抓取最新民宿信息,包括房源名称、图片、价格、评分等。这些数据经过清洗处理,确保质量和可用性,为个性化推荐提供基础。
现代爬虫需高效处理大规模数据,应对动态加载内容、IP封锁和验证码等挑战。爬虫设计趋向模拟真实用户浏览行为,使用如Selenium工具处理复杂Web交互。
爬虫技术不仅是数据收集工具,更是推动行业高效智能化发展的动力。对于民宿管理系统,爬虫是实现精准推荐和提升用户满意度的关键技术之一。
2.2 随机森林预测
利用Python中的Django框架和机器学习库(如pandas和scikit-learn)来对民宿数据进行预处理,并使用随机森林回归模型进行民宿价格预测。以下是具体的逻辑过程:
1.数据库获取数据
从数据库中获取所有民宿的数据,包括标题、城市、地址、评分、收藏量和价格。
from Homestay.models import HomestayList
homestays = HomestayList.objects.all().values('title', 'city', 'address', 'score', 'collections', 'price')
df = pd.DataFrame(list(homestays))
2.数据预处理:
将评分、收藏量和价格字段转换为数值类型,并删除任何缺失值。
df['score'] = pd.to_numeric(df['score'], errors='coerce')
df['collections'] = pd.to_numeric(df['collections'], errors='coerce')
df['price'] = pd.to_numeric(df['price'], errors='coerce')
df = df.dropna()
3.特征和目标变量:
选择特征(标题、城市、地址、评分、收藏量)和目标变量(价格),并将分类变量转换为数值编码。
X = df[['title', 'city', 'address', 'score', 'collections']]
y = df['price']
X.loc[:, 'title'] = X['title'].astype('category').cat.codes
X.loc[:, 'city'] = X['city'].astype('category').cat.codes
X.loc[:, 'address'] = X['address'].astype('category').cat.codes
4.划分训练集和测试集:
将数据集划分为训练集和测试集,比例为80%训练集和20%测试集。
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
三、部分功能展示
☀️爬虫民宿☀️
☀️爬虫评论☀️
☀️登录☀️
☀️首页展示☀️
☀️民宿数据管理展示☀️
☀️评论数据管理展示☀️
☀️评论情感数据管理展示☀️
☀️可视化分析☀️
☀️价格预测☀️
四、部分代码设计
4.1.登录【代码如下(示例):】
#登录处理
@csrf_exempt
def submit_login(request):
if request.method == 'POST':
username = request.POST.get('name')
password = request.POST.get('pwd')
user = authenticate(request, username=username, password=password)
if user is not None:
login(request, user)
request.session['username'] = username
return JsonResponse({'status': 'success', 'user': user.username})
else:
return JsonResponse({'status': 'error', 'message': 'Invalid credentials'})
return JsonResponse({'status': 'error', 'message': 'Method not allowed'}, status=405)
4.2.民宿管理之查询民宿【代码如下(示例):】
def homestay_list(request):
json_data = {}
# 读取数据库,并按某个字段排序,比如创建时间
HomestayLists = HomestayList.objects.all()
# 设置每页显示的数量
paginator = Paginator(HomestayLists, 10) # 每页显示8条记录
# 获取当前页码
page_number = request.GET.get('page')
page_obj = paginator.get_page(page_number)
json_data["page_obj"] = page_obj
json_data['arrResult'] = page_obj.object_list # 只传递当前页的数据
# 统计总数
total_Homestay_num = HomestayLists.count()
json_data["total_Homestay_num"] = total_Homestay_num
# 设置 X-Frame-Options 响应头为 SAMEORIGIN
response = render(request, 'front/homestay_list.html', json_data)
response['X-Frame-Options'] = 'SAMEORIGIN'
return response
4.3.跳转民宿评论管理界面,并查询数据【代码如下(示例):】
#跳转民宿评论管理界面,并查询数据
def homestay_comment_list(request):
json_data = {}
# 读取数据库,并按某个字段排序,比如创建时间
HomestayComments = HomestayComment.objects.all()
# 设置每页显示的数量
paginator = Paginator(HomestayComments, 10) # 每页显示8条记录
# 获取当前页码
page_number = request.GET.get('page')
page_obj = paginator.get_page(page_number)
json_data["page_obj"] = page_obj
json_data['arrResult'] = page_obj.object_list # 只传递当前页的数据
# 统计总数
total_comment_num = HomestayComments.count()
json_data["total_comment_num"] = total_comment_num
# 设置 X-Frame-Options 响应头为 SAMEORIGIN
response = render(request, 'front/homestay_comment_list.html', json_data)
response['X-Frame-Options'] = 'SAMEORIGIN'
return response
总结
源码获取:
大家点赞、收藏、关注、评论啦 、
打卡 文章 更新 112/ 365天
精彩专栏推荐订阅:在 下方专栏👇🏻👇🏻👇🏻👇🏻
Java精彩实战项目案例
Java精彩新手项目案例
Python精彩新手项目案例