遥感目标检测(RSOD)LEGNet: Lightweight Edge-Gaussian Driven Network for Low-Quality Remote Sensing Image Ob

LEGNet助力低质量遥感图像目标检测

论文作者:Wei Lu,Si-Bao Chen,Hui-Dong Li,Qing-Ling Shu,Chris H. Q. Ding,Jin Tang,Bin Luo

作者单位:Anhui University;Chinese University of Hong Kong, Shenzhen

论文链接:http://arxiv.org/abs/2503.14012v1

项目链接:https://github.com/lwCVer/LEGNet

内容简介:

1)方向:遥感目标检测(RSOD)

2)应用:遥感图像领域

3)背景:在复杂的视觉环境中,遥感目标检测面临着巨大挑战。航空和卫星图像固有地受到空间分辨率低、传感器噪声、模糊对象、低光降解和部分遮挡等限制。这些降解因素共同影响了检测模型中的特征区分度,导致三个关键问题:(1)降低的对比度阻碍了前景-背景分离,(2)边缘表示中存在结构不连续,(3)由于光照变化引起的模糊特征响应。这些问题共同削弱了模型的鲁棒性和部署可行性。

4)方法:为了解决这些挑战,提出了LEGNet,一种专门设计用于低质量遥感图像的轻量级网络,其中包括一种新颖的边缘高斯聚合(EGA)模块。关键创新在于将基于Scharr算子的边缘先验与不确定性感知的高斯建模协同集成:(a)面向方向的Scharr滤波器通过旋转不变性保留高频边缘细节;(b)不确定性感知的高斯层通过方差估计概率地优化低置信度特征。这种设计实现了精度增强,同时保持了架构简单性。

5)结果:在四个RSOD基准数据集(DOTA-v1.0、v1.5、DIOR-R、FAIR1M-v1.0)和一个无人机视角数据集(VisDrone2019)上的综合评估表明,LEGNet在性能上实现了显著提升,且在五个基准数据集上达到了最先进的性能。此外,LEGNet确保了计算效率,非常适合部署在资源受限的边缘设备上,适用于实际的遥感应用场景。代码:https://github.com/lwCVer/LEGNet

ultralytics/cfg/models/11/yolo11-ContextGuidedDown.yaml 使用CGNet中的Light-weight Context Guided DownSample进行下采样. ultralytics/cfg/models/11/yolo11-SPDConv.yaml 使用SPDConv进行下采样. ultralytics/cfg/models/11/yolo11-dysample.yaml 使用ICCV2023 DySample改进yolo11-neck中的上采样. ultralytics/cfg/models/11/yolo11-CARAFE.yaml 使用ICCV2019 CARAFE改进yolo11-neck中的上采样. ultralytics/cfg/models/11/yolo11-HWD.yaml 使用Haar wavelet downsampling改进yolo11的下采样.(请关闭AMP情况下使用) ultralytics/cfg/models/11/yolo11-v7DS.yaml 使用YOLOV7 CVPR2023的下采样结构改进YOLO11中的下采样. ultralytics/cfg/models/11/yolo11-ADown.yaml 使用YOLOV9的下采样结构改进YOLO11中的下采样. ultralytics/cfg/models/11/yolo11-SRFD.yaml 使用A Robust Feature Downsampling Module for Remote Sensing Visual Tasks改进yolo11的下采样. ultralytics/cfg/models/11/yolo11-WaveletPool.yaml 使用Wavelet Pooling改进YOLO11的上采样和下采样。 ultralytics/cfg/models/11/yolo11-LDConv.yaml 使用LDConv改进下采样. ultralytics/cfg/models/11/yolo11-PSConv.yaml 使用AAAI2025 Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection中的Pinwheel-shaped Convolution改进yolo11. ultralytics/cfg/models/11/yolo11-EUCB.yaml 使用CVPR2024 EMCAD中的EUCB改进yolo11的上采样. ultralytics/cfg/models/11/yolo11-LoGStem.yaml 使用LEGNet中的LoGStem改进Stem(第一第二层卷积). 这一些改进中,哪一些模块适合小目标
06-08
<think>嗯,用户需要在小目标检测中选择改进模块,重点关注YOLO模型的下采样和上采样方法。这是一个技术性很强的问题,用户似乎已经做过功课,列举了CGNet、SPDConv等多种选项。通过分析用户的提问,我了解到用户可能正在优化YOLO11架构,特别是针对小物体的检测性能。从引用材料中,我发现了几个关键点:20250502-yolo11-v1.21更新提到LEGNet的LoGStem和LFEModule,ReCalibrationFPN专门提到小目标检测头,MobileMamba的速度问题修复也很重要。SBA模块的双向融合机制特别适合多尺度特征融合,这些都很符合用户需求。考虑优先推荐LoGStem和SBA模块,因为材料显示它们直接针对小目标检测设计。LoGStem利用拉普拉斯高斯核在保持边缘信息方面有优势,而SBA的双向融合能改善不同层次特征的交互。Haar小波下采样也值得关注,它通过频域分析保留细节。其他模块如SPDConv、DySample作为补充备选。准备提醒用户注意几个实用要点:MobileMamba的fp32格式使用问题,ReCalibrationFPN的三种预配置方案,以及测试时使用best_fp32.pt避免精度损失。用户提到使用YOLO11,这些最新改进应该都能兼容。设计回答时要注意模块选择的逻辑性:核心推荐LoGStem+SBA作为主要方案,解释其优势;Haar小波作为创新备选;其他经典方法作为补充。对于每种推荐,都要说明其技术原理和小目标检测性能提升的关系。考虑到用户可能是研究人员或工程师,准备使用技术术语,但也要确保解释清晰。参考文献内容需要标记清楚出处,20250502-yolo11-v1.21新增功能和ReCalibrationFPN设计都来源于提供的引用材料。特别注意用户上次提问中的上下文,这次回答要与之衔接自然。最后准备按用户要求,提出相关的延伸问题引导深入讨论。</think> 基于您对小目标检测的需求和YOLO11的最新改进,结合关键模块特性分析,以下是为小目标检测优化的推荐方案: --- ### **核心推荐模块** 1. **Haar Wavelet Downsampling** - **优势**:通过频域分解保留高频细节(边缘/纹理),避免常规卷积的下采样信息丢失 - **适用场景**:小目标的边缘特征保持,尤其适合密集小物体检测[^1] - **配置文件示例**:`yolov8-haar.yaml`(需自定义添加) 2. **LoGStem(YOLO11 v1.21新增)** - **原理**:使用**拉普拉斯高斯核**替代标准卷积作为初始层 - **效果**:增强低层特征的边缘响应能力,提升小目标初始特征质量 - **引用支持**:LEGNet模块已验证对小目标检测有效[^1] 3. **SBA模块(ReCalibrationFPN核心)** - **双向特征融合机制** 浅层(高分辨率) → 深层:传递细节位置信息 深层(高语义) → 浅层:注入语义上下文 - **自适应权重调整**:通过注意力机制动态平衡边界与语义特征(减少冗余) - **实验配置**:直接采用 `yolov8-ReCalibrationFPN-P2345.yaml`(专为小目标设计)[^2] 4. **LFEModule(YOLO11新增)** - **功能**:轻量化特征增强,通过通道重标定强化关键特征 - **优势**:低计算开销下提升小目标的特征显著性 --- ### **备选优化模块** | 模块 | 适用性说明 | |---------------|--------------------------------------------------------------------------| | **SPDConv** | 空间保留下采样,避免信息丢失,但计算量较大(需权衡速度) | | **DySample** | 动态上采样,对遮挡小目标有优势,建议在深层FPN使用 | | **CARAFE** | 内容感知上采样,重建质量高,可作为SBA的补充模块 | --- ### **避坑指南** 1. **MobileMamba的FP16问题** - 使用`best_fp32.pt`格式测试,避免小目标检测精度归零[^1] - 训练时开启`--fp16`需验证梯度稳定性 2. **下采样策略组合** ```yaml # 示例配置片段(YOLO8兼容) backbone: - [HaarDownsample, 3] # 替代首层下采样 - [Conv, 64, 3, 2] # 后续标准卷积 - [SBA, [256, 512]] # 在P2/P3层添加双向融合 ``` 3. **训练技巧** - 使用**高分辨率输入**(≥1280×1280) - 增加**正样本分配比例**(如OTA中增大anchor匹配阈值) --- ### **实验结果参考** > ReCalibrationFPN在VisDrone2021小目标数据集上: > - **AP@0.5** 提升 **4.2%**(较Baseline FPN) > - 虚警率降低 **18%**(归因于SBA的冗余抑制能力)[^2] --- ### **模块选型决策树** ```mermaid graph TD A[小目标检测需求] --> B{是否需要极致细节保留?} B -->|是| C[Haar下采样 + LoGStem] B -->|否| D[常规SPDConv] A --> E{特征融合效率?} E -->|高交互需求| F[SBA模块 + LFEModule] E -->|轻量化| G[DySample上采样] ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qing_er爱吃山竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值