
论文作者:Wei Lu,Si-Bao Chen,Hui-Dong Li,Qing-Ling Shu,Chris H. Q. Ding,Jin Tang,Bin Luo
作者单位:Anhui University;Chinese University of Hong Kong, Shenzhen
论文链接:http://arxiv.org/abs/2503.14012v1
项目链接:https://github.com/lwCVer/LEGNet
内容简介:
1)方向:遥感目标检测(RSOD)
2)应用:遥感图像领域
3)背景:在复杂的视觉环境中,遥感目标检测面临着巨大挑战。航空和卫星图像固有地受到空间分辨率低、传感器噪声、模糊对象、低光降解和部分遮挡等限制。这些降解因素共同影响了检测模型中的特征区分度,导致三个关键问题:(1)降低的对比度阻碍了前景-背景分离,(2)边缘表示中存在结构不连续,(3)由于光照变化引起的模糊特征响应。这些问题共同削弱了模型的鲁棒性和部署可行性。
4)方法:为了解决这些挑战,提出了LEGNet,一种专门设计用于低质量遥感图像的轻量级网络,其中包括一种新颖的边缘高斯聚合(EGA)模块。关键创新在于将基于Scharr算子的边缘先验与不确定性感知的高斯建模协同集成:(a)面向方向的Scharr滤波器通过旋转不变性保留高频边缘细节;(b)不确定性感知的高斯层通过方差估计概率地优化低置信度特征。这种设计实现了精度增强,同时保持了架构简单性。
5)结果:在四个RSOD基准数据集(DOTA-v1.0、v1.5、DIOR-R、FAIR1M-v1.0)和一个无人机视角数据集(VisDrone2019)上的综合评估表明,LEGNet在性能上实现了显著提升,且在五个基准数据集上达到了最先进的性能。此外,LEGNet确保了计算效率,非常适合部署在资源受限的边缘设备上,适用于实际的遥感应用场景。代码:https://github.com/lwCVer/LEGNet















LEGNet助力低质量遥感图像目标检测
2163

被折叠的 条评论
为什么被折叠?



