正在上大学的我们,没了高三那紧张的氛围,老师的敲打,同学争先恐后的超越,一颗竞争之心也慢慢消失不见。也不知从什么时候开始,变得懒惰起来,甚至可能如我一样,觉得大学的课太枯燥无味,天天逃课。却又不知道从哪来的信心,并不觉得我会因此而挂科,想补的时候也不会老老实实地听课,而更多去追求一些简单方法,的确事半功倍(最好还是把基础打牢),确保不挂科,至于为啥要写下此类型的博客,一方面是为了巩固一下知识,另一方面也可以帮助如我一般的人不挂科!
好了,无关的话少说,接下来看一下下面这样的题型,我会先用一般方法和简单方法分别进行解题,至于哪个方法更适合你,就学哪个就好了。
例:A =
,B =
,求解矩阵方程AX=B。
1. 一般方法
因为|A| = -1 != 0,故A可逆。
思路:由AX=B可得:两侧同时左乘A^-1(A逆),得X = A^-1*B,然后在进行初等变换求出A逆,再相乘即可。
求A^-1: (A,E)——(E,A^-1)
(过程省略)
求得A^-1,再与B相乘即可得出X。
2. 简单方法
首先我们先来了解一个基本概念,为什么(A,E)经过初等变换后变成(E,A^-1)呢?
举个例子:
- A^-1A = E(左行右列,可以理解为对A进行有限次的初等行变换,得到E)
- A^-1E = A^-1(可以理解为对E进行有限次的初等行变换,得到,A^-1,并且,以上两式进行初等行变换的方法是一样的)
- 故而(A,E)——(E,A^-1)就是进行相同的有限次的初等行变换得到的。
可得到:A^-1A = E & A^-1B= X
故:(A,B)——(E,X)