线代小妙招(AX=B题型妙算)

本文描述了大学生如何在轻松的大学生活中克服懒惰,分享了用一般方法和简单方法解矩阵方程的过程,旨在帮助读者提高学习效率和巩固基础。
摘要由CSDN通过智能技术生成

        正在上大学的我们,没了高三那紧张的氛围,老师的敲打,同学争先恐后的超越,一颗竞争之心也慢慢消失不见。也不知从什么时候开始,变得懒惰起来,甚至可能如我一样,觉得大学的课太枯燥无味,天天逃课。却又不知道从哪来的信心,并不觉得我会因此而挂科,想补的时候也不会老老实实地听课,而更多去追求一些简单方法,的确事半功倍(最好还是把基础打牢),确保不挂科,至于为啥要写下此类型的博客,一方面是为了巩固一下知识,另一方面也可以帮助如我一般的人不挂科!

        好了,无关的话少说,接下来看一下下面这样的题型,我会先用一般方法和简单方法分别进行解题,至于哪个方法更适合你,就学哪个就好了。

               

例:A = \begin{pmatrix} 2 &2 &3 \\ 1& -1 &0 \\ -1& 2& 1 \end{pmatrix},B = \begin{pmatrix} 1 & 2\\ 1&-1 \\ 1&7 \end{pmatrix},求解矩阵方程AX=B。

1. 一般方法

        因为|A| = -1 != 0,故A可逆。

思路:由AX=B可得:两侧同时左乘A^-1(A逆),得X = A^-1*B,然后在进行初等变换求出A逆,再相乘即可。

求A^-1:           \begin{pmatrix} 2 &2 &3 &1 &0 &0 \\ 1& -1& 0& 0 &1 &0 \\ -1& 2& 1 & 0&0 & 1 \end{pmatrix}(A,E)——(E,A^-1)\begin{pmatrix} 1 &0 &0 & 1 & -4 &-3 \\ 0 & 1 &0 & 1 & -5 &-3 \\ 0& 0& 1& -1 &6 & 4 \end{pmatrix}(过程省略)

求得A^-1\begin{pmatrix} 1 &-4 &-3 \\ 1& -5& -3\\ -1& 6 &4 \end{pmatrix},再与B相乘即可得出X。

2. 简单方法

首先我们先来了解一个基本概念,为什么(A,E)经过初等变换后变成(E,A^-1)呢?

举个例子:

  •  A^-1A = E(左行右列,可以理解为对A进行有限次的初等行变换,得到E)
  •  A^-1E = A^-1(可以理解为对E进行有限次的初等行变换,得到,A^-1,并且,以上两式进行初等行变换的方法是一样的)
  • 故而(A,E)——(E,A^-1)就是进行相同的有限次的初等行变换得到的。

可得到:A^-1A = E &  A^-1B= X

故:(A,B)——(E,X)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值