在本文中,我们将介绍如何使用BERT-WWM(BERT-wwm-ext)、CNN和双向LSTM模型来进行文本分类和情感分析任务。我们将使用大众点评网站的景点评论数据集进行实验,并提供相应的源代码。
-
数据集介绍
我们使用的数据集是从大众点评网站中获取的景点评论数据。该数据集包含了用户对不同景点的评论以及相应的情感标签(积极或消极)。我们的目标是根据用户的评论来预测评论的情感分类。 -
数据预处理
在进行模型训练之前,我们需要对数据进行预处理。首先,我们对文本进行分词,并将每个词转换为对应的词向量。这里我们使用预训练的BERT-WWM模型来获取词向量表示。然后,我们对每个评论进行填充或截断,以使它们具有相同的长度。最后,我们将情感标签转换为数值表示(例如,积极表示为1,消极表示为0)。下面是数据预处理的代码示例:
import pandas as pd
from transformers import BertTokenizer