基于BERT-WWM、CNN和双向LSTM的文本情感分析实现——大众点评景点评论数据

本文介绍如何利用BERT-WWM、CNN和双向LSTM对大众点评景点评论进行情感分析。数据预处理涉及分词、词向量转换和填充,模型构建结合BERT-WWM、CNN和LSTM,最后进行训练、评估和预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在本文中,我们将介绍如何使用BERT-WWM(BERT-wwm-ext)、CNN和双向LSTM模型来进行文本分类和情感分析任务。我们将使用大众点评网站的景点评论数据集进行实验,并提供相应的源代码。

  1. 数据集介绍
    我们使用的数据集是从大众点评网站中获取的景点评论数据。该数据集包含了用户对不同景点的评论以及相应的情感标签(积极或消极)。我们的目标是根据用户的评论来预测评论的情感分类。

  2. 数据预处理
    在进行模型训练之前,我们需要对数据进行预处理。首先,我们对文本进行分词,并将每个词转换为对应的词向量。这里我们使用预训练的BERT-WWM模型来获取词向量表示。然后,我们对每个评论进行填充或截断,以使它们具有相同的长度。最后,我们将情感标签转换为数值表示(例如,积极表示为1,消极表示为0)。

    下面是数据预处理的代码示例:

import pandas as pd
from transformers import BertTokenizer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值