[Python人工智能] 四十二.命名实体识别 (3)基于Bert+BiLSTM-CRF的中文实体识别万字详解(异常解决中)

本文详细介绍了基于Bert+BiLSTM-CRF的中文实体识别,包括模型构建、数据集加载、训练过程及模型评估。作者使用bert4keras库,并参考相关视频进行实践,尽管遇到一些问题,但已分享当前进展作为在线笔记。后续将对模型进行优化。
摘要由CSDN通过智能技术生成

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现中文命名实体识别研究,构建BiGRU-CRF模型实现。这篇文章将继续以中文语料为主,介绍融合Bert的实体识别研究,使用bert4keras和kears包来构建Bert+BiLSTM-CRF模型。然而,该代码最终结果有些问题,目前还在解决中,但现阶段方法先作为在线笔记分享出来。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!

常见框架如下图所示:

在这里插入图片描述

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值