六度分离 HDU - 1869

1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。 

Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。

Input

本题目包含多组测试,请处理到文件结束。 
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。 
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。 
除了这M组关系,其他任意两人之间均不相识。 

Output

对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。

Sample Input

8 7
0 1
1 2
2 3
3 4
4 5
5 6
6 7
8 8
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 0

Sample Output

Yes
Yes
/*
思路:任意两个人之间的距离不能超过7;如果超过7
输出No,否则输出Yes。用Floyd
*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define INF 0x7fffffff
#define M 110
int n;
int map[M][M];
int dist[M][M];
int path[M][M];
void floyd(int g[M][M],int d[M][M],int p[M][M])
{
    int i,j,k;
    for(i=0; i<n; i++)
    {
        for(j=0; j<n; j++)
        {
            d[i][j]=g[i][j];
            if(i!=j&&d[i][j]<INF)
                p[i][j]=i;
            else
                p[i][j]=-1;
        }
    }
    for(k=0; k<n; k++)
    {
        for(i=0; i<n; i++)
        {
            for(j=0; j<n; j++)
            {
                if(d[i][k]<INF&&d[k][j]<INF)
                    if(d[i][j]>(d[i][k]+d[k][j]))
                    {
                        d[i][j]=d[i][k]+d[k][j];
                        p[i][j]=k;
                    }
            }
        }
    }
}
void print(int a[M][M])
{
    int i,j;
    for(i=0; i<n; i++)
    {
        for(j=0; j<n; j++)
            printf("%d ",a[i][j]);
        printf("\n");
    }
}
int main()
{
    int i,j;
    int m;
    int a,b;
    while(~scanf("%d%d",&n,&m))
    {

        for(i=0; i<n; i++)
            for(j=0; j<n; j++)
                map[i][j]=INF;
        for(i=0; i<m; i++)
        {
            scanf("%d%d",&a,&b);
            map[a][b]=map[b][a]=1;
        }
        floyd(map,dist,path);
        int flag=1;
        for(i=0; i<n&&flag; i++)
        {
            for(j=i+1; j<n&&flag; j++)
                if(dist[i][j]>7)
                    flag=0;
        }
        printf("%s\n",flag?"Yes":"No");
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值