1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
Input
本题目包含多组测试,请处理到文件结束。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
Output
对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。
Sample Input
8 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0
Sample Output
Yes Yes
/*
思路:任意两个人之间的距离不能超过7;如果超过7
输出No,否则输出Yes。用Floyd
*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define INF 0x7fffffff
#define M 110
int n;
int map[M][M];
int dist[M][M];
int path[M][M];
void floyd(int g[M][M],int d[M][M],int p[M][M])
{
int i,j,k;
for(i=0; i<n; i++)
{
for(j=0; j<n; j++)
{
d[i][j]=g[i][j];
if(i!=j&&d[i][j]<INF)
p[i][j]=i;
else
p[i][j]=-1;
}
}
for(k=0; k<n; k++)
{
for(i=0; i<n; i++)
{
for(j=0; j<n; j++)
{
if(d[i][k]<INF&&d[k][j]<INF)
if(d[i][j]>(d[i][k]+d[k][j]))
{
d[i][j]=d[i][k]+d[k][j];
p[i][j]=k;
}
}
}
}
}
void print(int a[M][M])
{
int i,j;
for(i=0; i<n; i++)
{
for(j=0; j<n; j++)
printf("%d ",a[i][j]);
printf("\n");
}
}
int main()
{
int i,j;
int m;
int a,b;
while(~scanf("%d%d",&n,&m))
{
for(i=0; i<n; i++)
for(j=0; j<n; j++)
map[i][j]=INF;
for(i=0; i<m; i++)
{
scanf("%d%d",&a,&b);
map[a][b]=map[b][a]=1;
}
floyd(map,dist,path);
int flag=1;
for(i=0; i<n&&flag; i++)
{
for(j=i+1; j<n&&flag; j++)
if(dist[i][j]>7)
flag=0;
}
printf("%s\n",flag?"Yes":"No");
}
}