谷歌前“量子之父”人物因“量子霸权”贡献获第七届贝尔奖,深度导读!

导读:
第七届两年一度的贝尔奖 (John Stewart Bell Prize) 颁发,以表彰在量子力学基本问题及其应用研究方面做出特殊贡献的科学家[1]。

此次奖授予John Martinis (前谷歌量子计算负责人,以下简称“Martinis”),以表彰他在超导装置设计和控制方面的创新,特别是他在设计低误差多量子比特超导芯片方面的领导才能,他带领谷歌首次令人信服地实现了量子优势,开启了计算技术的新时代。

 

  1. 起源超导
  2. 结缘谷歌
  3. 花开2019
  4. 结果2021
  5. 后记

 

1. 起源超导

Martinis自1985年在加州大学伯克利分校攻读博士学位以来,对相干超导设备进行了开创性的研究。

这些超导设备可以使用约瑟夫森结、电容和电感作为元件的块状元素电路建模。跨越约瑟夫森结的超导相可以显示相干的量子行为,尽管这是大量电子的波函数的性质,但这一事实足以视为一个基本的发现[2]。

如今看来,这一基础突破开启了超导量子计算的新天地。

为了实现可扩展的多比特量子计算,Martinis发明并开发了基于电流偏置约瑟夫森结的超导相位量子比特[3]。

早在2002年,他就首次演示了相干拉比振荡 (Coherent Rabi oscillations) 和这种超导相位量子比特的量子测量[4]。

Martinis对了解超导线路中噪声的来源有着长期的兴趣,因为这些噪声源自然会限制量子比特的相干性。
 
在这里插入图片描述

图1|超导量子线路(来源:ugcimg)

特别是,他通过简单的物理模型,对介电损耗、磁通量噪声和准粒子的存在和动态等噪声源的理解[5],在该领域起到了关键性的作用。准粒子的影响和缓解,以及它们如何受到辐射和宇宙射线的影响,对超导量子器件的未来仍然具有高度的兴趣[6,7]。

 

2. 结缘谷歌

真正显示出他对量子计算机领导者地位和实现承诺的重要机缘是加入产业界。早在2014年,时任UCSB的教授的他,转到谷歌,在那里聚合了一个包含大量物理学家和工程师的团队,开始挑战制造多量子比特可编程处理器。
 
在这里插入图片描述

图2|John Martin时任谷歌首席科学家(来源:华尔街日报)

这个团队通过对量子比特设计、耦合器和可扩展的I/O实施最为成功的工程方案选,做了大量优秀的工作。

一个例子是在“Xmons”,即X形跨门类比特之间实现了一个质量空前的双比特门,保真度高达99.4%[8]。这使得该团队朝着量子纠错的圣杯迈出了关键的第一步。

量子纠错的目的是利用许多量子比特的冗余来表示具有改进的相干性和逻辑门的逻辑量子比特。

特别是用Xmon量子比特的线性阵列通过重复奇偶性测量实现经典重复码的实验[9]首次证明,逻辑量子比特的保真度随着量子比特冗余度的增加而提高。
 
在这里插入图片描述

图3|UCSB/谷歌量子计算小组获得量子优势发表论文的作者(来源:UCSB)

 

3. 花开2019

这些工程进展在2019年9月达到了顶峰,创造了53个量子比特的Sycamore芯片,这是一个多量子比特的可编程量子设备,具有前所未有的尺寸、一致性和能力的2D量子比特连接[10,13]。

有了这个芯片,他领导的谷歌团队能够执行一个相对较深的量子电路,首次涉足新的计算领域。

发表在《自然》的论文[11]中被称为“量子霸权 (量子优越性)”,其定义是普通的“经典”计算机无法模拟一个足够大的可编程量子设备的输出。
 
在这里插入图片描述

图4|谷歌量子计算机(来源:谷歌)

 

4. 结果2021

贝尔实验揭示了量子纠缠的非局域性及其对经典随机模型的偏离,而量子优势实验证明量子对经典物理学计算能力的重塑。

鉴于经典算法是强大的既定平台,在实验上证明量子优越性需要高精度的多量子比特控制,因为噪声很容易破坏量子计算的优势。

Sycamore芯片的控制水平已经为执行创新的模拟、优化或量子纠错实验创造了新的机会,正如谷歌量子人工智能团队和合作者在2020年和2021年展示的成果[12]。

因此,贝尔奖委员会认为,2019年的量子超导实验可以看作是Martinis多年来致力于建造多量子位超导处理器的最高成就,促使其获奖。

 

5. 后记

不过遗憾的是,Martinis带领团队获得成就之后,并没有继续在谷歌的工作。

这位帮助谷歌实现“量子霸权”的关键人物已在悉尼重新露面,并在澳大利亚初创公司,硅量子计算公司 (SQC) 任职,担任重要角色。
 
在这里插入图片描述

图5|任职于SQC的John Martinis和Michelle Simmons(来源:SQC)

未来,硅量子计算能否大放光彩呢,期待。

 

参考链接:

[1]https://cqiqc.physics.utoronto.ca/bell-prize/bell-prize-winners/john-martinis-awarded-the-seventh-bell-prize/

[2]J.M. Martinis, M.J. Devoret, J. Clarke, Energy-Level Quantization in the Zero-Voltage State of a Current-Biased Josephson Junction, Phys.Rev. Lett. 55, 1543 (1985).

[3]J.M. Martinis, Superconducting phase qubits, Quantum Information Processing 8, 81–103 (2009).

[4]J.M. Martinis, M. Ansmann and J. Aumentado, Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations, Phys. Rev. Lett. 103, 097002 (2009).

[5]J.M. Martinis, M. Ansmann and J. Aumentado, Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations, Phys. Rev. Lett. 103, 097002 (2009).

[6]A. P. Vepsäläinen et al, Impact of ionizing radiation on superconducting qubit coherence, Nature 584, 551–556 (2020).

[7]J.M. Martinis, Saving superconducting quantum processors from qubit decay and correlated errors generated by gamma and cosmic rays, https://arxiv.org/abs/2012.06137

[8]R. Barends et al., Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing, Nature 508, 500–503 (2014)

[9]J. Kelly et al., State preservation by repetitive error detection in a superconducting quantum circuit, Nature 519, 66–69 (2015).

[10]A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012)

[11]F. Arute et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505–510 (2019)

[12]J. Preskill, Quantum computing and the entanglement frontier, https://arxiv.org/abs/1203.5813

[13]K. J. Satzinger et al, Realizing topologically ordered states on a quantum processor, https://arxiv.org/abs/2104.01180

 

声明:此文出于传递高质量信息之目的,若来源标注错误或侵权,请作者持权属证明与我们联系,我们将及时更正、删除,所有图片的版权归属所引用组织机构,此处仅引用,原创文章转载需授权。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值