Rong互质——一种数论理论

前言

最近做IMO数论题的时候,突然发现了一个判断两数是否互质的方法。

但是这种方法并不能判断所有的两个数是否互质,只能对符合某种特殊条件的两个数快速判断。

如果此定理与其他理论雷同,纯属巧合。

最后,欢迎大家对定理及其证明过程提出批评、意见。

定义

若有整数:

a , b , n a,b,n a,b,n

且符合条件:

n ∣ ( a − 1 ) n|(a-1) n(a1)
n ∣ ( b − 1 ) n|(b-1) n(b1)
( a − 1 ) ÷ n − ( b − 1 ) ÷ n = n (a-1) \div n - (b-1) \div n = n (a1)÷n(b1)÷n=n

那么我们称a与b互为Rong互质数,记作:

r o n g ( a , b ) rong(a, b) rong(a,b)

定理

互为Rong互质的两个整数必然互质。

证明

  • 以下证明所使用到的整除定理:

( a , b ) = ( b , a ) (a, b)=(b,a) (a,b)=(b,a)

对于任意整数 x , ( a , b ) = ( a , b − a x ) 对于任意整数x, (a, b)=(a, b-ax) 对于任意整数x,(a,b)=(a,bax)

  • 证明过程

∵ r o n g ( a , b ) \because rong(a,b) rong(a,b)
不妨设整数 x , n ,使 a = x n + 1 , b = ( x + 1 ) n + 1 不妨设整数x,n,使a=xn+1,b=(x+1)n+1 不妨设整数x,n,使a=xn+1,b=(x+1)n+1
∴ ( a , b ) = ( x n + 1 , ( x + 1 ) n + 1 ) = ( x n + 1 , ( x + 1 ) n + 1 − x n + 1 ) = ( x n + 1 , n ) = ( n , x n + 1 ) = ( n , x n + 1 − x n ) = ( n , 1 ) = 1. \begin{aligned} &\therefore(a,b) \\ &=(xn+1, (x+1)n+1) \\ &=(xn+1, (x+1)n+1 - xn+1) \\ &=(xn+1, n) \\ &=(n, xn+1) \\ &=(n, xn+1 - xn) \\ &=(n, 1) \\ &=1. \end{aligned} (a,b)=(xn+1,(x+1)n+1)=(xn+1,(x+1)n+1xn+1)=(xn+1,n)=(n,xn+1)=(n,xn+1xn)=(n,1)=1.
(证完) (证完) (证完)

应用

题目来源:IMO第一届第一题

求证:21n+4与14n+3不可约

解:
依题意得:求证 ( 21 n + 4 , 14 n + 3 ) = 1 依题意得:求证(21n+4, 14n+3)=1 依题意得:求证(21n+4,14n+3)=1

不妨设 a = 21 n + 4 , b = 14 n + 3 不妨设a=21n+4, b=14n+3 不妨设a=21n+4,b=14n+3

显然: a = 21 n + 4 = 3 × 7 n + 3 + 1 = 3 ( 7 n + 1 ) + 1 b = 14 n + 3 = 2 × 7 n + 2 + 1 = 2 ( 7 n + 1 ) + 1 显然: \\ a = 21n+4 = 3 \times 7n+3+1 = 3(7n+1)+1 \\ b = 14n+3 = 2 \times 7n+2+1 = 2(7n+1)+1 显然:a=21n+4=3×7n+3+1=3(7n+1)+1b=14n+3=2×7n+2+1=2(7n+1)+1

此时若设 x = 7 n + 1 ,不难看出: x ∣ ( a − 1 ) x ∣ ( b − 1 ) ( a − 1 ) ÷ x − ( b − 1 ) ÷ x = x 此时若设 x=7n+1 ,不难看出: \\ x|(a-1) \\ x|(b-1) \\ (a-1) \div x - (b-1) \div x = x 此时若设x=7n+1,不难看出:x(a1)x(b1)(a1)÷x(b1)÷x=x

∴ r o n g ( a , b ) \therefore rong(a, b) rong(a,b)

∴ ( a , b ) = 1 \therefore (a, b)=1 (a,b)=1

(证完) (证完) (证完)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值