BNUZ比赛训练【补】
题目:http://codeforces.com/problemset/problem/554/D
其实个人感觉这题很坑,读了很久题读不懂,读题解的解析题目也读不懂,因为整个题目一直在说的是,构成回环然后,下一种回环会怎么出现,然后按照题目来各种yy样例,怎么跑都不对,直到最后看到了整篇文章的最后一段话,他不希望上面那种回环发生,要求我们求除了上面所述的回环的全部情况,并列一张表(这张表到底是不是无规律的也不知道。。),问你表上第k种状态的值长什么样。题目大意:
对于每一个ai,他们会指向i下标的值,那么就有可能构成回环
比如说:2 3 1,这种,1指向2,2指向3,3指向1,那么他们就是一个回环
然后对于这种回环,需要把他们缩成的环在环内排个序,比如2 3 1 5 4
(231)(54)这是两个环,然后他们排序后构成新的序列(321)(54)
但是!!!他其实要求的是,不希望他们环内排完序后位置发生变化,那其实很明显了,只需要一个有序序列,每次只能交换两个相邻位置的数,且,这两个数只能交换一次,那全部情况都出来了
这种其实很容易想到,暴力dfs,回溯搞一搞,把所有情况都找出来,然后告诉他第k种情况。但是很遗憾的是我们来算算时间复杂度,以最长的来说,50长度,然后两两都可以交换的情况为25,然后错一个位置,有24(就是头尾的数不换,中间的数两两交换),那总共有49种可能交换的方式,然后每两个数可以交换也可以不交换,那就是2^49,这个数,你用回溯+dfs想想。。。那就等到明年才能算出来。
所以弱鸡的我,选择了继续看题解。。但是题解真的是一知半解,啥都讲不清,所以只好yy代码。首先一眼看到了一个斐波那契数列,很懵逼,怎么这题又跟斐波那契有关。然后就黑板上模拟了一下
1个数的情况:只有1种
2个数的情况:自身一种,交换一种,共2种
3个数的情况:自身一种,交换两种,共3种
。。。
然后就会发现,当前情况,等于上一个情况+上上个情况的种数,f[n] = f[n - 1] + f[n - 2]又是一个斐波那契序列。。。然而,斐波那契懂了,却不知道应该如何操作了,举个例子:对于6这组数据
他有
1 2 3 4 5 6
1 2 3 4 6 5
1 2 3 5 4 6
1 2 4 3 5 6
1 3 2 4 5 6
2 1 3 4 5 6
2 1 3 4 6 5
2 1 3 5 4 6
2 1 4 3 5 6
。。。
省略其实也应该发现了,这东西像冒泡一样,每次交换两个,然后一直沉到最底部,然后再从最上面开始,每次交换两个
那我们可不可以这么想,当k大于f[n - 2]的情况的时候,说明最底部位置的两个数,一定交换了,但是这个我想了很久。。好像不对啊。k大于f[n - 2]的话,有可能出现最底部两个数不换的情况。所以只能k大于f[n - 1]的情况,保证最底部的数被交换了,交换就是跟下一个数换嘛。
如果换了的话那n-2,k - f[n - 1]继续压缩状态,这样写起来有点像dp。这样讲也算是明白了吧。
那这里附送上简简单单的代码。
/*
@resrouces: codeforces 554D
@date: 2017-3-11
@author: QuanQqqqq
@algorithm: 数论 dp想法
*/
#include <bits/stdc++.h>
#define MAXN 100
#define ll long long
using namespace std;
int main(){
ll f[MAXN];
f[1] = f[0] = 1;
for(int i = 2;i < MAXN;i++){
f[i] = f[i - 1] + f[i - 2];
}
ll n,k;
scanf("%lld %lld",&n,&k);
ll a1 = 1,a2 = 2;
while(n > 0){
if(k > f[n - 1]){
printf("%lld %lld ",a2,a1);
a1 += 2;
a2 += 2;
k -= f[n - 1];
n -= 2;
} else {
printf("%lld ",a1);
a1++;
a2++;
n--;
}
}
}