LeetCode 5. 最长回文子串 (动态规划)

题目

  • 给你一个字符串 s,找到 s 中最长的回文子串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。 

题解

动态规划

  • 如果我们已经知道 bab那么 ababa 一定是回文串,这是因为它的首尾两个字母都是 a
  • 我们用 P(i,j) 表示字符串 s 的第 i 到 j 个字母组成的串(下文表示成 s[i:j])是否为回文串:
  • 动态规划递推式:
    在这里插入图片描述
    这里的「其它情况」包含两种可能性:

在这里插入图片描述

那么我们就可以写出动态规划的状态转移方程:

在这里插入图片描述

也就是说,只有 s[i+1 : j−1] 是回文串,并且 s 的第 i 和 j个字母相同时,s[i : j] 才会是回文串

  • 上文的所有讨论是建立在子串长度大于 2、2 的前提之上的,我们还需要考虑动态规划中的边界条件,即子串的长度为 1 或 2。对于长度为 1 的子串,它显然是个回文串;对于长度为 2 的子串,只要它的两个字母相同,它就是一个回文串。因此我们就可以写出动态规划的边界条件

在这里插入图片描述

  • 根据这个思路,我们就可以完成动态规划了,最终的答案即为所有 P(i, j) =truej-i+1(即子串长度)的最大值。注意:在状态转移方程中,我们是从长度较短的字符串向长度较长的字符串进行转移的,因此一定要注意动态规划的循环顺序。

代码

package leetcodePlan.Base;

public class P005 {

	public static void main(String[] args) {
		String s = "babad" ;
		System.out.println(fun(s));
		
	}
	
	public static String fun(String s) {
		int len = s.length()  ;
		if(len < 2) {
			return s ;
		}
		
		int maxLen = 1 ;
		int begin = 0 ;
		
		// dp[][]   表示 s[ i .. j]  是否为回文串
		boolean[][] dp = new boolean [len][len] ;
		//  初始化
		for(int i = 0 ; i < len ;i++) {
			dp[i][i] = true ;
		}
		
		char [] charArray = s.toCharArray() ;
		
		// 递推开始枚举
		for(int L = 2 ; L <= len ;L++) {
			for(int i = 0 ; i < len ;i++) {   //  i  为左边界 j 为右边界
				int j = L + i -1 ;
				if(j >= len) {
					 break ;
				}
				
				if(charArray[i] != charArray[j]) {
					dp[i][j] = false ;
				} else {
					if(j - i < 3) {
						dp[i][j] = true ;
 					} else {
 						dp[i][j] = dp[i+1][j-1] ;
 					}
				}
				
				// 只要 dp[i][j] == true 成立, s[i ...L]  为回文并记录位置,找出最大回文
				if(dp[i][j] && j - i+ 1 > maxLen) {
					maxLen = j - 1+1 ;
					begin = i ;
				}
				
			}
		}
		return s.substring(begin,begin + maxLen) ;
	}

}

  • 中心扩展算法(待更新)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值