题目
- 给你一个字符串 s,找到 s 中最长的回文子串。
示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
题解
动态规划
- 如果我们已经知道
bab
那么ababa
一定是回文串,这是因为它的首尾两个字母都是a
- 我们用 P(i,j) 表示字符串 s 的第 i 到 j 个字母组成的串(下文表示成 s[i:j])是否为回文串:
- 动态规划递推式:
这里的「其它情况」包含两种可能性:
那么我们就可以写出动态规划的状态转移方程:
也就是说,只有 s[i+1 : j−1] 是回文串,并且 s 的第 i 和 j个字母相同时,s[i : j] 才会是回文串。
- 上文的所有讨论是建立在子串长度大于 2、2 的前提之上的,我们还需要考虑动态规划中的边界条件,即子串的长度为 1 或 2。对于长度为 1 的子串,它显然是个回文串;对于长度为 2 的子串,只要它的两个字母相同,它就是一个回文串。因此我们就可以写出动态规划的边界条件
- 根据这个思路,我们就可以完成动态规划了,最终的答案即为所有
P(i, j) =true
中j-i+1
(即子串长度)的最大值。注意:在状态转移方程中,我们是从长度较短的字符串向长度较长的字符串进行转移的,因此一定要注意动态规划的循环顺序。
代码
package leetcodePlan.Base;
public class P005 {
public static void main(String[] args) {
String s = "babad" ;
System.out.println(fun(s));
}
public static String fun(String s) {
int len = s.length() ;
if(len < 2) {
return s ;
}
int maxLen = 1 ;
int begin = 0 ;
// dp[][] 表示 s[ i .. j] 是否为回文串
boolean[][] dp = new boolean [len][len] ;
// 初始化
for(int i = 0 ; i < len ;i++) {
dp[i][i] = true ;
}
char [] charArray = s.toCharArray() ;
// 递推开始枚举
for(int L = 2 ; L <= len ;L++) {
for(int i = 0 ; i < len ;i++) { // i 为左边界 j 为右边界
int j = L + i -1 ;
if(j >= len) {
break ;
}
if(charArray[i] != charArray[j]) {
dp[i][j] = false ;
} else {
if(j - i < 3) {
dp[i][j] = true ;
} else {
dp[i][j] = dp[i+1][j-1] ;
}
}
// 只要 dp[i][j] == true 成立, s[i ...L] 为回文并记录位置,找出最大回文
if(dp[i][j] && j - i+ 1 > maxLen) {
maxLen = j - 1+1 ;
begin = i ;
}
}
}
return s.substring(begin,begin + maxLen) ;
}
}
- 中心扩展算法(待更新)