leetcode - 413. Arithmetic Slices

算法系列博客之Dynamic Programming

动态规划是和贪心算法比较相似的一种算法策略
      很多时候它们一般都遵从于某种线性的策略,使得整个逻辑和复杂度都看上去是线性的
但其二者有着本质的区别
      动态规划实际上是在划分子问题,子问题可以用同种方法进行再度拆解,凑巧划分的过程大多数时候是线性的
      而贪心算法则是解决问题的步骤看似是一个线性过程,但每一步可以看作一个原子操作,不可拆解

本篇博客将运用动态规划的思想来解决leetcode上413号问题


问题描述:

A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

A slice (P, Q) of array A is called arithmetic if the sequence:
A[P], A[p + 1], …, A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

The function should return the number of arithmetic slices in the array A.

题目看上去很复杂,需要考虑连续以及间断掉的情况,但实际上连续的这个限制就已经给我们提供了线索
扫描每个数字的时候都判断它是否与之前的差距相等,一旦出现不等,就可以以该数字为起点当作一个子问题来处理了

现在来看差距相等的连续数字个数k与arithmetic slices个数nums[k]之间的关系:
      ·  如果k < 3,根据arithmetic的定义,nums[k] = 0
      ·   如果连续的数字大于等于3个,则nums[k] = nums[k-1] + (k-2)
在向前推进的过程中,逐渐将nums[k] 加到结果res中去(实际上完全可以用res来替换掉数组nums)
当出现与前面的数字差不一样的数字的时候,重置k,以该数字为起点,保留现有res的基础上进行子问题求解

class Solution(object):
    def numberOfArithmeticSlices(self, A):
        length = len(A)
        if length < 3:
            return 0

        k = 1
        diff = A[1] - A[0]
        res = 0
        for i in range(2, length):
            if A[i] - A[i-1] == diff:
                res += k
                k += 1
            else :
                diff = A[i] - A[i-1]
                k = 1
        return res

上面的代码在逻辑上看上去是非常简明清晰的,但是实际上对于res累加的过程是依据于表达式nums[k] = nums[k-1] + (k-2)的
仔细观察发现每次else的时候对k重置,累加也就重新开始, 而通过简单的数学推理就可以发现只要利用重置前的k值进行一个简单的数学运算就可以替换掉之前的累加运算来减少每个循环单元的运算次数(不过由于循环规模并没有降低,因而并不会降低算法复杂度)

class Solution(object):
    def numberOfArithmeticSlices(self, A):
        def f(n):
            return 0 if n < 2 else (n*(n-1)) / 2

        length = len(A)
        if length < 3:
            return 0

        k = 1
        diff = A[1] - A[0]
        res = 0
        for i in range(2, length):
            if A[i] - A[i-1] == diff:
                k += 1
            else :
                diff = A[i] - A[i-1]
                res += f(k)
                k = 1
        return res + f(k)

时间复杂度分析,整个过程只有一个线性循环,两种实现循环内部都只有常数倍的运算,因而O(n)
空间复杂度分析,两种实现都只是额外需要四个基本变量,因而O(1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值