lightoj1149 - Factors and Multiples【二分图最大匹配】


1149 - Factors and Multiples
Time Limit: 2 second(s)Memory Limit: 32 MB

You will be given two sets of integers. Let's call them set A and set B. Set A contains n elements and set B contains m elements. You have to remove k1 elements from set A and k2 elements from set B so that of the remaining values no integer in set B is a multiple of any integer in set Ak1 should be in the range [0, n] and k2 in the range [0, m].

You have to find the value of (k1 + k2) such that (k1 + k2) is as low as possible. P is a multiple of Q if there is some integer K such that P = K * Q.


Suppose set A is {2, 3, 4, 5} and set B is {6, 7, 8, 9}. By removing 2 and 3 from A and 8 from B, we get the sets {4, 5} and {6, 7, 9}. Here none of the integers 6, 7 or 9 is a multiple of 4 or 5.

So for this case the answer is 3 (two from set A and one from set B).

Input

Input starts with an integer T (≤ 50), denoting the number of test cases.

The first line of each case starts with an integer n followed by n positive integers. The second line starts with m followed by m positive integers. Both n and m will be in the range [1, 100]. Each element of the two sets will fit in a 32 bit signed integer.

Output

For each case of input, print the case number and the result.

Sample Input

Output for Sample Input

2

4 2 3 4 5

4 6 7 8 9

3 100 200 300

1 150

Case 1: 3

Case 2: 0


#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=110;
int n,m;
int p[maxn];
int numa[maxn];
int numb[maxn];
bool vis[maxn];
bool find(int k){
	for(int i=0;i<m;++i){
		if(!vis[i]&&numb[i]%numa[k]==0){
			vis[i]=true;
			if(p[i]==-1||find(p[i])){
				p[i]=k;
				return true;
			}
		}
	}
	return false;
}
int main()
{
	int i,j,k=1,t;
	scanf("%d",&t);
	while(t--){
		scanf("%d",&n);
		for(i=0;i<n;++i){
			scanf("%d",&numa[i]);
		}
		scanf("%d",&m);
		for(i=0;i<m;++i){
			scanf("%d",&numb[i]);
		}
		int ans=0;
		memset(p,-1,sizeof(p));
		for(i=0;i<n;++i){
			memset(vis,false,sizeof(vis));
			if(find(i))ans++;
		}
		printf("Case %d: %d\n",k++,ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值