Time Limit: 2 second(s) | Memory Limit: 32 MB |
You will be given two sets of integers. Let's call them set A and set B. Set A contains n elements and set B contains m elements. You have to remove k1 elements from set A and k2 elements from set B so that of the remaining values no integer in set B is a multiple of any integer in set A. k1 should be in the range [0, n] and k2 in the range [0, m].
You have to find the value of (k1 + k2) such that (k1 + k2) is as low as possible. P is a multiple of Q if there is some integer K such that P = K * Q.
Suppose set A is {2, 3, 4, 5} and set B is {6, 7, 8, 9}. By removing 2 and 3 from A and 8 from B, we get the sets {4, 5} and {6, 7, 9}. Here none of the integers 6, 7 or 9 is a multiple of 4 or 5.
So for this case the answer is 3 (two from set A and one from set B).
Input
Input starts with an integer T (≤ 50), denoting the number of test cases.
The first line of each case starts with an integer n followed by n positive integers. The second line starts with m followed by m positive integers. Both n and m will be in the range [1, 100]. Each element of the two sets will fit in a 32 bit signed integer.
Output
For each case of input, print the case number and the result.
Sample Input | Output for Sample Input |
2 4 2 3 4 5 4 6 7 8 9 3 100 200 300 1 150 | Case 1: 3 Case 2: 0 |
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=110;
int n,m;
int p[maxn];
int numa[maxn];
int numb[maxn];
bool vis[maxn];
bool find(int k){
for(int i=0;i<m;++i){
if(!vis[i]&&numb[i]%numa[k]==0){
vis[i]=true;
if(p[i]==-1||find(p[i])){
p[i]=k;
return true;
}
}
}
return false;
}
int main()
{
int i,j,k=1,t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(i=0;i<n;++i){
scanf("%d",&numa[i]);
}
scanf("%d",&m);
for(i=0;i<m;++i){
scanf("%d",&numb[i]);
}
int ans=0;
memset(p,-1,sizeof(p));
for(i=0;i<n;++i){
memset(vis,false,sizeof(vis));
if(find(i))ans++;
}
printf("Case %d: %d\n",k++,ans);
}
return 0;
}