BC18hdoj5104&&hdoj5105&&hdoj5106

Primes Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2014    Accepted Submission(s): 926


Problem Description
Given a number n, please count how many tuple(p1, p2, p3) satisfied that p1<=p2<=p3, p1,p2,p3 are primes and p1 + p2 + p3 = n.
 

Input
Multiple test cases(less than 100), for each test case, the only line indicates the positive integer  n(n10000) .
 

Output
For each test case, print the number of ways.
 

Sample Input
  
  
3 9
 

Sample Output
  
  
0 2
 

Source
 

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<list>
#include<vector>
using namespace std;
const int maxn=10010;
int num[maxn];
int prime[maxn];
bool isprime[maxn];
int main()
{
    int n,i,j,k,ans,cnt=0;
    memset(isprime,false,sizeof(isprime));
    isprime[0]=isprime[1]=true;
    for(i=2;i<maxn;++i){
        if(isprime[i])continue;
        prime[cnt++]=i;
        for(j=i*i;j<maxn;j+=i){
            isprime[j]=true;
        }
    }
    while(scanf("%d",&n)!=EOF){
        int ans=0;//2 3 5 7 
        for(i=0;i<cnt&&prime[i]<=n;++i){
            for(j=i;j<cnt&&prime[i]+prime[j]<=n;++j){
                if(!isprime[n-prime[i]-prime[j]]&&(n-prime[i]-prime[j])>=prime[j])ans++;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

Math Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2418    Accepted Submission(s): 579


Problem Description
Here has an function:
   f(x)=|ax3+bx2+cx+d|(LxR)
Please figure out the maximum result of f(x).
 

Input
Multiple test cases(less than 100). For each test case, there will be only 1 line contains 6 numbers a, b, c, d, L and R.  (10a,b,c,d10,100LR100)
 

Output
For each test case, print the answer that was rounded to 2 digits after decimal point in 1 line.
 

Sample Input
  
  
1.00 2.00 3.00 4.00 5.00 6.00
 

Sample Output
  
  
310.00
 

Source
 

注意a和b等于0的情况还有精度

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<list>
#include<vector>
#define eps 1e-10
using namespace std;
int main()
{
    double a,b,c,d,l,r;
    while(scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&l,&r)!=EOF){
        if(fabs(a)<=eps){
            if(fabs(b)<=eps){
                printf("%.2lf\n",max(fabs(a*l*l*l+b*l*l+c*l+d),fabs(a*r*r*r+b*r*r+c*r+d)));
            }
            else {
                double x=-c/(2.0*b);
                if(x-l>=-eps&&x-r<=eps){
                    printf("%.2lf\n",max(max(fabs(a*l*l*l+b*l*l+c*l+d),fabs(a*r*r*r+b*r*r+c*r+d)),fabs(a*x*x*x+b*x*x+c*x+d)));
                }
                else {
                    printf("%.2lf\n",max(fabs(a*l*l*l+b*l*l+c*l+d),fabs(a*r*r*r+b*r*r+c*r+d)));
                }
            }
            continue;
        } 
        double t=4.0*b*b-12.0*a*c;
        if(t<=eps){
            printf("%.2lf\n",max(fabs(a*l*l*l+b*l*l+c*l+d),fabs(a*r*r*r+b*r*r+c*r+d)));
        }
        else {
            t=sqrt(t);
            double x1=(-2.0*b+t)/(6.0*a);
            double x2=(-2.0*b-t)/(6.0*a);
            if(x1-l>=-eps&&x1-r<=eps&&x2-l>=-eps&&x2-r<=eps)
                printf("%.2lf\n",max(max(fabs(a*l*l*l+b*l*l+c*l+d),fabs(a*r*r*r+b*r*r+c*r+d)),max(fabs(a*x1*x1*x1+b*x1*x1+c*x1+d),fabs(a*x2*x2*x2+b*x2*x2+c*x2+d))));
            else if(x1-l>=-eps&&x1-r<=eps){
                printf("%.2lf\n",max(max(fabs(a*l*l*l+b*l*l+c*l+d),fabs(a*r*r*r+b*r*r+c*r+d)),fabs(a*x1*x1*x1+b*x1*x1+c*x1+d)));
            }
            else if(x2-l>=-eps&&x2-r<=eps){
                printf("%.2lf\n",max(max(fabs(a*l*l*l+b*l*l+c*l+d),fabs(a*r*r*r+b*r*r+c*r+d)),fabs(a*x2*x2*x2+b*x2*x2+c*x2+d)));
            }
            else {
                printf("%.2lf\n",max(fabs(a*l*l*l+b*l*l+c*l+d),fabs(a*r*r*r+b*r*r+c*r+d)));
            }
        }
    }
    return 0;
}

Bits Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 701    Accepted Submission(s): 183


Problem Description
If the quantity of '1' in a number's binary digits is n, we call this number a n-onebit number. For instance, 8(1000) is a 1-onebit number, and 5(101) is a 2-onebit number. Now give you a number - n, please figure out the sum of n-onebit number belong to [0, R).
 

Input
Multiple test cases(less than 65). For each test case, there will only 1 line contains a non-negative integer n and a positive integer  R(n1000,0<R<21000) , R is represented by binary digits, the data guarantee that there is no leading zeros.
 

Output
For each test case, print the answer module 1000000007 in one line.
 

Sample Input
  
  
1 1000
 

Sample Output
  
  
7
 

Source
 

对于一个n-bit数,可以根据与R最高不同位的位置分成几类。比如R=100100010,可以分成0xxxxxxxx,1000xxxxx,10010000x三类。x处可任取0或者1。对于一类数,设与R不同的最高位为L(从低位数起,base 0),设n0 = n - 高于L位的1的个数。此时和分两部分,高于L位的有 CLn0C^{n_0}_LCLn0 乘以L位之前的数字,低于L位的部分有 CLn0∗n0/L∗(2L−1)C^{n_0}_L * n0 / L * (2^{L-1})CLn0n0/L(2L1)  (因为低于L位的部分每一个位的1的个数相同,1的个数总数有 CLn0∗n0C^{n_0}_L*n_0CLn0n0 ,平均到每个位则是 CLn0∗n0/LC^{n_0}_L*n_0/LCLn0n0/L 。所以低位部分和有 CLn0∗n0/L∗(1+2+...+2L−1)=CLn0∗n0/L∗(2L−1)C^{n_0}_L*n_0/L*(1+2+...+2^{L-1}) = C^{n_0}_L*n_0/L*(2^{L-1})CLn0n0/L(1+2+...+2L1)=CLn0n0/L(2L-1) 
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<list>
#include<vector>
#define MOD 1000000007
using namespace std;
const int maxn=1010;
char bit[maxn];
long long Pow[maxn];
int C[maxn][maxn];
void init(){  
    Pow[0]=1;  
    for(int i=0;i<maxn;++i){  
        C[i][i]=C[i][0]=1;  
        if(i)Pow[i]=(Pow[i-1]*2)%MOD;
    }  
    for(int i=2;i<maxn;++i){    
        for(int j=1;j<i;++j){    
            C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;    
        }    
    }  
}
int main()
{
    init();
    int n,i,j,k;
    while(scanf("%d %s",&n,bit)!=EOF){
        int len=strlen(bit);
        long long pre=0,cnt=0,ans=0;
        for(i=0;i<len;++i){
            if(bit[i]=='1'){
                if((n-cnt)<=(len-i-1)){
                    if(n-cnt)ans=(ans+C[len-i-2][n-cnt-1]%MOD*(Pow[len-i-1]-1))%MOD;
                    ans=(ans+pre*C[len-i-1][n-cnt])%MOD;
                    pre=(pre+Pow[len-i-1])%MOD;cnt++;
                }
            }
            if(cnt>n)break; 
        }
        printf("%lld\n",ans);
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值