Codeforces Round #369 (Div. 2)B. Chris and Magic Square

B. Chris and Magic Square
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

ZS the Coder and Chris the Baboon arrived at the entrance of Udayland. There is a n × n magic grid on the entrance which is filled with integers. Chris noticed that exactly one of the cells in the grid is empty, and to enter Udayland, they need to fill a positive integer into the empty cell.

Chris tried filling in random numbers but it didn't work. ZS the Coder realizes that they need to fill in a positive integer such that the numbers in the grid form a magic square. This means that he has to fill in a positive integer so that the sum of the numbers in each row of the grid (), each column of the grid (), and the two long diagonals of the grid (the main diagonal —  and the secondary diagonal — ) are equal.

Chris doesn't know what number to fill in. Can you help Chris find the correct positive integer to fill in or determine that it is impossible?

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 500) — the number of rows and columns of the magic grid.

n lines follow, each of them contains n integers. The j-th number in the i-th of them denotes ai, j (1 ≤ ai, j ≤ 109 or ai, j = 0), the number in the i-th row and j-th column of the magic grid. If the corresponding cell is empty, ai, j will be equal to 0. Otherwise, ai, j is positive.

It is guaranteed that there is exactly one pair of integers i, j (1 ≤ i, j ≤ n) such that ai, j = 0.

Output

Output a single integer, the positive integer x (1 ≤ x ≤ 1018) that should be filled in the empty cell so that the whole grid becomes a magic square. If such positive integer x does not exist, output  - 1 instead.

If there are multiple solutions, you may print any of them.

Examples
input
3
4 0 2
3 5 7
8 1 6
output
9
input
4
1 1 1 1
1 1 0 1
1 1 1 1
1 1 1 1
output
1
input
4
1 1 1 1
1 1 0 1
1 1 2 1
1 1 1 1
output
-1
Note

In the first sample case, we can fill in 9 into the empty cell to make the resulting grid a magic square. Indeed,

The sum of numbers in each row is:

4 + 9 + 2 = 3 + 5 + 7 = 8 + 1 + 6 = 15.

The sum of numbers in each column is:

4 + 3 + 8 = 9 + 5 + 1 = 2 + 7 + 6 = 15.

The sum of numbers in the two diagonals is:

4 + 5 + 6 = 2 + 5 + 8 = 15.

In the third sample case, it is impossible to fill a number in the empty square such that the resulting grid is a magic square.

题意:给出一个n*n的格子其中一个格子的数未知求这个格子的所对应的数字使得每行每列正对角线反对角线的和相等

/* ***********************************************
Author       : ryc
Created Time : 2016-09-06 Tuesday
File Name    : E:\acm\codeforces\369B.cpp
Language     : c++
Copyright 2016 ryc All Rights Reserved
************************************************ */
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
using namespace std;
typedef long long LL;
typedef pair<LL,LL>pll;
const int maxn=10010;
set<LL>S,S1;
LL Map[510][510];
int main()
{
    int n;cin>>n;
    if(n==1){
        printf("1\n");
        return 0;
    }
    int x,y;
    for(int i=1;i<=n;++i){
        for(int j=1;j<=n;++j){
            scanf("%d",&Map[i][j]);
            if(Map[i][j]==0){
                x=i;y=j;
            }
        }
    }
    bool sign=true;
    for(int i=1;i<=n;++i){
        LL temp=0;if(i==x)continue;
        for(int j=1;j<=n;++j){
            temp+=Map[i][j];
        }
        S.insert(temp);
    }
    for(int i=1;i<=n;++i){
        LL temp=0;if(i==y)continue;
        for(int j=1;j<=n;++j){
            temp+=Map[j][i];
        }
        S.insert(temp);
    }
    if(x!=y){
        LL temp=0;
        for(int i=1;i<=n;++i){
            temp+=Map[i][i];
        }
        S.insert(temp);
    }
    else {
        LL temp=0;
        for(int i=1;i<=n;++i){
            temp+=Map[i][i];
        }
        S1.insert(*S.begin()-temp);
    }
    if(x+y!=n+1){
        LL temp=0;
        for(int i=1;i<=n;++i){
            temp+=Map[i][n+1-i];
        }
        S.insert(temp);
    }
    else {
        LL temp=0;
        for(int i=1;i<=n;++i){
            temp+=Map[i][n+1-i];
        }
        S1.insert(*S.begin()-temp);
    }
    if(S.size()>1)sign=false;
    LL temp1=0,temp2=0;
    for(int i=1;i<=n;++i){
        temp1+=Map[x][i];
        temp2+=Map[i][y];
    }
    S1.insert(*S.begin()-temp1);
    S1.insert(*S.begin()-temp2);

    if(S1.size()>1)sign=false;
    if(sign&&*S1.begin()>0)
        printf("%lld\n",*S1.begin());
    else
        printf("-1\n");
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值