干货丨人工智能、机器学习和认知计算入门指南

本文介绍了人工智能的历史、基础概念和重要领域,如搜索、感知器、集群算法、决策树、机器学习等。特别强调了深度学习和认知计算的发展,如卷积神经网络、长短期记忆网络,以及IBM Watson在认知计算的成就。文章适合初学者了解AI的概貌和发展。
摘要由CSDN通过智能技术生成

几千年来,人们就已经有了思考如何构建智能机器的想法。从那时开始,人工智能 (AI) 经历了起起落落,这证明了它的成功以及还未实现的潜能。如今,随时都能听到应用机器学习算法来解决新问题的新闻。从癌症检测和预测到图像理解和总结以及自然语言处理,AI 正在增强人们的能力和改变我们的世界。

现代 AI 的历史包含一部伟大的戏剧应具有的所有要素。上世纪 50 年代,随着对思维机器及阿兰·图灵和约翰·冯·诺依曼等著名人物的关注,AI 开始崭露头角。尽管随后经历了数十年的繁荣与萧条,并被寄予了难以实现的厚望,但 AI 和它的先驱们仍然一直在努力前行。如今,AI 展现出了它的真正潜力,专注于应用并提供深度学习和认知计算等技术。

本文将探索 AI 的一些重要方面和它的子领域。我们首先会分析 AI 的时间线,然后深入介绍每种要素。

现代 AI 的时间线

从上世纪 50 年代开始,现代 AI 开始专注于所谓的强 AI,强 AI 指的是能普遍执行人类所能执行的任何智能任务的 AI。强 AI 的进展乏力,最终导致了所谓的弱 AI,或者将 AI 技术应用于更小范围的问题。直到上世纪 80 年代,AI 研究被拆分为这两种范式。但在 1980 年左右,机器学习成为了一个突出的研究领域,它的目标是让计算机能学习并构建模型,以便能够执行一些活动,比如特定领域中的预测。

图 1. 现代人工智能的时间线

点击查看大图深度学习于 2000 年左右出现,建立在 AI 和机器学习的研究成果之上。计算机科学家通过新的拓扑结构和学习方法,在许多层中使用神经网络。神经网络的这次演变成功解决了各种不同领域的复杂问题。

在过去 10 年中,认知计算兴起,它的目标是构建能学习并自然地与人交流的系统。IBM Watson 通过在 Jeopardy 比赛上成功击败世界级对手,证明了认知计算的能力。

在本教程中,我将探索每个领域,解释一些促使认知计算取得成功的重要算法。

基础 AI

1950 年前的研究中提出了大脑由电脉冲网络组成的理念,这些脉冲触发并以某种方式精心组织形成思想和意识。阿兰·图灵表明任何计算都能以数字方式实现,那时,距离实现构建一台能模仿人脑的机器的想法也就不远了。

许多早期研究都重点关注过这个强 AI 方面,但这一时期也引入了一些基础概念,如今的所有机器学习和深度学习都是在这些概念基础上建立起来的。

图 2. 1980 年前的人工智能方法的时间线

AI 即搜索

AI 中的许多问题都可以通过暴力搜索(比如深度或广度优先搜索)来解决。但是,考虑到普通问题的搜索空间,基本搜索很快就会招架不住。AI 即搜索的最早示例之一是一个下棋程序的开发。Arthur Samuel 在 IBM 701 Electronic Data Processing Machine 上构建了第一个这样的程序,对搜索树执行一种名为 α-β 剪枝技术(alpha-beta pruning)的优化。他的程序还会记录特定某步棋的回报,允许应用程序学习每一场比赛(使它成为了第一个自主学习的程序)。为了提高程序的学习速度,Samuel 将它设计为能够自己跟自己下棋,提高了它的下棋和学习能力。

尽管可以成功地应用对许多简单问题的搜索,但随着选择数量的增加,该方法很快就会行不通。以简单的井字棋游戏为例。在游戏开始时,有 9 种可能的棋着。每步棋着会导致 8 种可能的对抗棋着,以此类推。井字棋完整的棋着树(未进行旋转优化来删除重复棋着)有 362,880 个节点。如果您将同样的思维试验推广到象棋或围棋,很快就会看到搜索的缺点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值