主成分分析(PCA)原理总结

3901436-1cae5e4d974ccf38

欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!

对商业智能BI、大数据分析挖掘、机器学习,python,R等数据领域感兴趣的同学加微信:tstoutiao,邀请你进入数据爱好者交流群,数据爱好者们都在这儿。

作者:张磊 从事AI医疗算法相关工作

个人微信公众号:

机器学习算法那些事(微信ID:zl13751026985


主成分分析(Principal components analysis,以下简称PCA)是最常用的降维方法之一,在数据压缩和消除冗余方面具有广泛的应用,本文由浅入深的对其降维原理进行了详细总结。


目录


1.向量投影和矩阵投影的含义

2. 向量降维和矩阵降维的含义

3. 基向量选择算法

4. 基向量个数的确定

5. 中心化的作用

6. PCA算法流程

7. PCA算法总结


1. 向量投影和矩阵投影的含义

如下图:

3901436-b2dc4950e285f97d

向量a在向量b的投影为:

3901436-7175fa55701cd831

其中,θ是向量间的夹角 。

向量a在向量b的投影表示向量a在向量b方向的信息,若θ=90°时,向量a与向量b正交,向量a无向量b信息,即向量间无冗余信息 。因此,向量最简单的表示方法是用基向量表示,如下图:

3901436-2b91230dc0de3da6


向量表示方法:

3901436-17a4142743c11524
3901436-c143a665d99a4653


3901436-7e06802a67bbc989

,其中ai(i=1,2,...,n)为n个维度的列向量,那么矩阵A的列向量表示为:

3901436-29ce355e7fb7473c

其中,e1,e2,...,en为矩阵A的特征向量 。

若矩阵A是对称矩阵,那么特征向量为正交向量,我们对上式结合成矩阵的形式:

3901436-623617a6efe1d063


3901436-ca6ad8e92fd0ae4b


由上式可知,对称矩阵A在各特征向量的投影等于矩阵列向量展开后的系数,特征向量可理解为基向量。

2. 向量降维和矩阵降维含义

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值