开屏广告=让用户等?小红书如何兼顾用户体验和广告投放效果

开屏广告作为小红书品牌广告的重要组成部分,已成为诸多品牌客户触达目标用户、实现品牌营销诉求的强力助推器。小红书开屏广告的投放策略,既要满足客户对保量和效果的诉求,还要兼顾对用户体验的影响。由此我们配套了“流量优选+动态决策”方案,从开屏广告流量优选的形式化出发,推导得到最优分配策略,基于反馈调节实现了在线的流量分配;同时为尽可能缩短开屏场景下用户的等待时间,我们设计了动态决策机制,在满足用户体验要求的前提下实现了流量优选。

开屏广告会在用户打开小红书 APP 时进行全屏展现,整屏曝光带来的沉浸式视觉体验,能够高效帮助品牌和产品提升用户认知。配合丰富的交互样式与落地页类型,小红书开屏广告已成为诸多品牌在新品上市、品牌活动等期间快速触达目标用户的强力助推器。

目前小红书的开屏广告主要支持以合约的方式售卖,即客户采买流量时,提前与平台确认预定的曝光量,在投放当天由平台自动投放并保证曝光量满足预期。

近年来在品效结合的大背景下,除了保量,投放开屏广告的客户更希望平台能够优化广告的投放效果。在实际的业务场景中,客户主要基于 CTR 来评估广告的投放表现。过去小红书的开屏广告投放更多注重的是订单保量,未充分考虑如何优化投放效果,我们希望通过将投放策略升级为流量优选,在满足订单保量的前提下,优化开屏广告的 CTR。

接下来我们将分两部分介绍小红书开屏广告的投放策略:

● 第一部分介绍我们如何在较为理想的情况下通过流量优选满足客户对开屏广告保量和效果的诉求。我们从问题定义与形式化出发,通过推导得到流量优选的最优分配策略,并基于反馈调节实现了在线的流量分配;

● 第二部分介绍决策机制升级在工程落地时,由于小红书对用户体验的高要求,APP 启动时间被压缩得很短以致难以进行实时广告决策,我们设计了异步决策的方案,并在此基础上进一步实现了开屏广告的动态加载机制,在满足用户体验要求的前提下落地了开屏的流量优选

小红书开屏广告的流量优选,目标是在满足保量的基础上,尽可能优化广告 CTR。这是一个典型的流量分配问题,业内针对此类问题的常⽤做法是对分配问题进⾏形式化建模,并通过对偶求解的⽅式将问题进⾏转换,求解出流量最优分配公式,然后基于最优分配公式,采用反馈调节的方式实现流量优选的落地。遵循这一思路,我们先介绍问题形式化建模与求解。

问题定义与求解

我们定义开屏全天流量集合为 \{pv_i \ | \ i = 1,2,3,\dots,n\}  ,广告订单集合为 

Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小红书技术REDtech

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值