rectangular training 矩阵训练

该博客介绍了YOLOv3模型训练中的两种策略:Square和Rectangular Training。Square Training通过将所有图片调整为正方形来简化处理,但引入了冗余信息。而Rectangular Training则仅将短边填充到32的倍数,减少了冗余,但可能导致图片尺寸不一致,影响数据加载器的shuffling功能。这种优化可以加快训练速度并减少无效信息的影响。
摘要由CSDN通过智能技术生成

矩阵训练是yolov3使用的一个tricks

以前的训练都是Square training,也就是说输入图片是一个正方形。

Square training(正方形训练)

代码

def square(img: np.ndarray, newshape=(414,414), color=(128,128,128)):
	# img: 输入图片,测试是用cv2读取输入的
	# newshape: 图片新的形状
	# color: 填充的像素颜色
    if isinstance(newshape, int):
        newshape = (newshape, newshape)
    h, w, _ = img.shape
    # h大 和 w大 分别处理,保证输出的图片形状一定是newshape
    if h > w:
        r = newshape[1] / h
        h_ = newshape[1]
        w_ = int(round(w * r))
        img = cv2.resize(img, (w_, h_))
        left_pad = int((newshape[0] - w_) / 2)
        right_pad = newshape[0] - w_ - left_pad
        img = cv2.copyMakeBorder(img, 0, 0, left_pad, right_pad,cv2.BORDER_CONSTANT, value=color)
    else:
        r = newshape[0] / w
        h_ = int(round(h * r))
        w_ = newshape[0]
        img = cv2.resize(img, (w_, h_))
        bottom_pad = int((newshape[1] - h_) / 2)
        top_pad = newshape[1] - h_ - bottom_pad
        img = cv2.copyMakeBorder(img, top_pad, bottom_pad, 0, 0, cv2.BORDER_CONSTANT, value=color)
    return img

结果显示

321x481

414x414
在这里插入图片描述

正方形训练可以统一所有图片的大小,从而训练方便,但是问题在填充图片的过程中,我们引入了很多冗余信息。为了处理这个问题,yolov3提出使用矩形训练。

rectangular training (矩阵训练)

矩形训练也很好理解,也就是原来图片的长边还是填充到最大长度,但是短边只填充到32的倍数。
这样处理过后可以引入较少的冗余信息。加快训练速度。
但是引入了其他问题,第一就是图片集的大小不一样,yolov3的处理是将尺寸接近的放到一起处理,这就导致不能使用dataloader中的shuffle功能。

def rectangular(img: np.ndarray, newshape=414, color=(128,128,128)):
	# img: 输入图片,测试是用cv2读取输入的
	# newshape: 图片新的形状
	# color: 填充的像素颜色
    if isinstance(newshape, (tuple,list)):
        newshape = newshape[0]
    h, w, _ = img.shape
    if h > w:
        r = newshape / h
        h_ = newshape
        w_ = int(round(w * r))
        img = cv2.resize(img, (w_, h_))
        left_pad = int((32 - (w_ % 32)) / 2) if w_ % 32 != 0 else 0
        right_pad = 32 - (w_ % 32) - left_pad if w_ % 32 != 0  else 0
        img = cv2.copyMakeBorder(img, 0, 0, left_pad, right_pad,cv2.BORDER_CONSTANT, value=color)
    else:
        r = newshape / w
        h_ = int(round(h * r))
        w_ = newshape
        img = cv2.resize(img, (w_, h_))
        bottom_pad = int((32 - (h_ % 32)) / 2) if h_ % 32 != 0 else 0
        top_pad = 32 - (h_ % 32) - bottom_pad if h_ % 32 != 0  else 0
        img = cv2.copyMakeBorder(img, top_pad, bottom_pad, 0, 0, cv2.BORDER_CONSTANT, value=color)
    return img

321x481
在这里插入图片描述
414x288
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值